Post-fire regeneration in a changing climate

Kim Davis Research Scientist University of Montana Kimberley.davis@umontana.edu February 3, 2021

• Changes in fire size

• Changes in fire size

Changes in fire frequency

• Changes in fire size

- Changes in fire frequency
- Changes in post-fire climate

Changes in fire size

- Changes in fire frequency
- Changes in post-fire climate

Changes in fire size: Distance to seed source

Changes in fire size: Distance to seed source

Kemp et al. 2016 Landscape Ecology

Changes in fire size: Seed availability

Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA

Kyle C. Rodman,^{1,5} Thomas T. Veblen,¹ Teresa B. Chapman,^{1,2} Monica T. Rother,³ Andreas P. Wion,⁴ and Miranda D. Redmond⁴

Changes in fire size: Seed availability

- Lack of live mature trees limited regeneration potential in many areas
- Moisture limited regeneration in marginal sites

Rodman et al. 2020 Ecological Applications

Larger fires may benefit serotinous or seedbank species

Larger fires may benefit species with long dispersal distances

- Aspen has effective very long distance dispersal
- Dispersal capability will determine ability of plants to move to areas with more suitable climate postfire

Changes in fire size

- Increased distance to seed source
- Changes in fire frequency
- Changes in post-fire climate

Changes in fire size

Increased distance to seed source

Changes in fire frequency

Changes in post-fire climate

Changes in fire frequency: Short-interval fires

Photo: Brian Harvey

Changes in fire frequency: microclimate

Temperature 2° C warmer and soil moisture 25% lower in short-interval compared to long-interval fires.

Hoecker et al. 2020 Forest Ecology & Management

Changes in fire frequency: tree regeneration

Effects of short-interval fires (16-28 years) on postfire tree density in Yellowstone NP

Changes in fire frequency: stand structure

Effects of short-interval fire (8 years) in Bob Marshall Wilderness

- Mortality of small diameter lodgepole & Doug-fir
- Consumption of coarse woody fuels from first fire
- Reduced duff mounds at base of large ponderosa

Larson et al. 2013 Ecological Applications

Increased fire frequency may favor certain species

Rodman et al. 2020 J. of Ecology

Increased fire frequency may favor certain species

Age to maturity

Species	Age to maturity
Whitebark pine	20-30
Lodgepole pine	5-15
Limber pine	20-40
Rocky Mountain bristlecone pine	10-40
Western hemlock	25-30
Engelmann spruce	15-40
Blue spruce	20
Subalpine fir	20
Gambel oak	3-5
Aspen	2-3

Rodman et al. 2020 J. of Ecology

Changes in fire frequency

Short-interval fires

Photo: Brian Harvey

- Can affect microclimate, seed availability, tree regeneration
- Forest to non-forest conversions in some cases
- Less dense forests, potentially more resilient to future conditions in other cases
- Favor species that are quick to reproductive maturity

Changes in fire size

- Increased distance to seed source
- Changes in fire frequency
 - Variable effects context specific
- Changes in post-fire climate

Changes in fire size

- Increased distance to seed source
- Changes in fire frequency
 - Variable effects context specific
- Changes in post-fire climate

Dry forests less likely to have regeneration than moist forests

Climate will be increasingly important in N. Rockies

Climate will increasingly determine post-fire tree regeneration success in low-elevation forests, Northern Rockies, USA Kerry B. Kemp^{1,4},† Philip E. Higuera,² Penelope Morgan,¹ and John T. Abatzoglou³

- Hot summer temperatures and distance to seed source limit post-fire ponderosa pine and Douglas-fir regeneration.
- Post-fire regeneration densities are predicted to decline in future with warmer summer temperatures.

Climate will be increasingly important in N. Rockies

Climate will increasingly determine post-fire tree regeneration success in low-elevation forests, Northern Rockies, USA Kerry B. Kemp^{1,4,}† Philip E. Higuera,² Penelope Morgan,¹ and John T. Abatzoglou³

- Hot summer temperatures and distance to seed source limit post-fire ponderosa pine and Douglas-fir regeneration.
- Post-fire regeneration densities are predicted to decline in future with warmer summer temperatures.

Change in recruitment densities 1981-2010 to 2041-2070 (RCP 8.5)

Ponderosa

Climate will limit regeneration in S. Rockies

Number of years that exceed 19thcentury tree density thresholds (50 PIPO/ha; 15 PSME/ha)

Climate impacts on subalpine forest regeneration

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2016)

High and dry: post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches

Brian J. Harvey^{1*}, Daniel C. Donato² and Monica G. Turner¹

 Post-fire subalpine fir and Engelmann spruce regeneration declined with increased post-fire drought

Climate impacts: experimental evidence

Open topped chambers (OTCs) in Colorado Front Range (Monica Rother)

 Reduced regeneration seen in warming treatments for ponderosa pine, Douglas fir, lodgepole pine, Engelmann spruce.

Rother et al. 2015; Kueppers et al. 2016; Conlisk et al. 2017; Hansen & Turner 2018

Annual climate & post-fire regeneration study

CO data: <u>Rother & Veblen 2017</u> <u>Davis et al. 2019 *PNAS*</u>

Recruitment-climate relationships have thresholds

Ponderosa pine

Recruitment-climate relationships have thresholds

Ponderosa pine

Recruitment-climate relationships have thresholds

Douglas-fir

Climatic thresholds crossed in recent decades

Ponderosa pine

Recruitment probability declined in recent decades

Douglas-fir

Davis et al. 2019 PNAS

Background | Annual climate | Microclimate | Conclusions

Recruitment probability declined in recent decades

Davis et al. 2019 PNAS

Background | Annual climate | Microclimate | Conclusions

Changes in fire size

- Increased distance to seed source
- Changes in fire frequency
 - Variable effects context specific
- Changes in post-fire climate
 - Declines in recruitment in montane
 and subalpine forests

• Other disturbances – insects, drought, blowdown

• Resprout following fire

- Resprout following fire
- Maintain canopy or soil seedbanks

- Resprout following fire
- Maintain canopy or soil seedbanks
- Have long distance seed dispersal

- Resprout following fire
- Maintain canopy or soil seedbanks
- Have long distance seed dispersal
- Produce drought-tolerant seedlings

- Resprout following fire
- Maintain canopy or soil seedbanks
- Have long distance seed dispersal
- Produce drought-tolerant seedlings
- Reach reproductive maturity quickly

Questions?

Canyon Ferry Complex Fire, 2000 Helena National Forest, MT Photo year : 2017