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Cold region hydrology: Water and life from snow

Snow affects half of the Northern Hemisphere, 1/6" of Earth’s population, 1/4"" of GDP
Barnett et al. (2005); Sturm et al. (2017)

Impacts climatic, ecologic, hydrologic systems

* Mountain snow produces up to 80% of streamflow in western North America

. Li et al. (2017)
agriculture hydropower

* Cools the climate: high albedo reflects solar energy back to space



Forest cover: extensive regional & local impacts on water resources
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Physical processes determine how much, when,
and where meltwater is available



Ecosystem services: The products of the functioning
natural environment that benefit people.  Brown et al. (2007)

Classification of Ecosystem Services: Millennium Ecosystem Assessment (2005)
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Ecosystem services: The products of the functioning
natural environment that benefit people.  Brown et al. (2007)

Classification of Ecosystem Services: Millennium Ecosystem Assessment (2005)
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Ecosystem services: The products of the functioning
natural environment that benefit people.  Brown et al. (2007)

Classification of Ecosystem Services: Millennium Ecosystem Assessment (2005)
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Ecosystem services: The products of the functioning
natural environment that benefit people.  Brown et al. (2007)

Classification of Ecosystem Services: Millennium Ecosystem Assessment (2005)
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Assessing ecosystem
services In montane
forests requires
consideration of

snow-forest interactions.

The system is complex!

Time-lapse of seasonal forest-snow conditions

Snowpack observation station below Niwot Ridge, CO
Natural Resources Conservation Service
U.S. Department of Agriculture



Much of the snow intercepted by canopy
sublimates to the atmosphere.

% of total seasonal snowfall
lost to canopy sublimation:

mixed spruce—aspen:|13%

mature pine: 31%
mature spruce: 40%
Aspen Pine Spruce Southern boreal forest Pomeroy et al. (1999)

Denser forests have less snow beneath the canopy






Sun exposure & terrain aspect
determine local environmental
conditions.

Complex feedbacks with
vegetation to consider!

Environ. conditions

Snowpack Forest

Environ. conditions




Ecohydrologic models perform optimally in homogeneous conditions




... but face challenges under increasingly heterogeneous
conditions

Forest structure coverage & heterogeneity impacts:

d Hydrology d Ecology  Socioeconomics (S)
=  Water yield = Species diversity = Thinning
= Soil moisture = Recruitment =  Burn decisions

= Carbon dynamics =  Wildfire response



Forest Gap Theory in Snow Hydrology

Forest gaps: breaks in the overhead canopy

% Often expressed as a fraction of tree height

E.g., Gap diameter = 2 x tree height




Forest Gap Theory in Snow Hydrology

Forest gaps: breaksymkhgiRveidieascaandstion

 Minimize sun exposure (solar radiation)
Q * Prolong seasonal snow-cover & melt

“Optimal” gap size depends on
solar angle (melt season, latitude, slope)




Forest gaps offer benefits beyond snow
hydrology.

A variety of microenvironments in forest gaps facilitate diverse
communities of vegetation, animals, and insects.

* Forest gaps are increasingly being used as a measure of biodiversity.

* Provide Microrefugia — locations with favorable local climate conditions
amidst unfavorable regional conditions.




Marmot Creek Experimental Forest, Alberta, Canada
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Marmot Creek Experimental Forest
(1970s — early 1980s)

* Could forest manipulations modify
streamflow?

 Small forest clearings increased
snow accumulation

* |Impacts on melt rates depended on
clearing size, slope & aspect

&

+  Manipulations had modest impacts én

runoff timing & variability; only local
impacts on streamflow volume S

&t

Rothwell et al. (2016)



Colorado forest manipulations

Creating clusters of trees (reducing forest density) has

been shown to increase streamflow & snow persistence.

&

| Post-treatment [

'; -

-
Qo o
v

B &
> 8

Streamflow
DISCHORGE -MYsec

Pre-treatment

APR MAY JUNE JULY AUG SEPT

Source: Troendle, 1983

Fraser Experimental Forest, CO



To an extent, these natural systems ‘self-manage’ resources.

Thin spacing of a (managed) Sierra Nevada forest Forest die-off during the recent California drought

Has fire suppression and greater forest density
stifled water resources & forest resilience?



Forest heterogeneity and ecohydrologic challenges
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Forest heterogeneity and ecohydrologic challenges
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Forest heterogeneity and ecohydrologic challenges
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Forest heterogeneity and ecohydrologic challenges
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Forest heterogeneity and ecohydrologic challenges
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Forest heterogeneity and ecohydrologic challenges

Report 3 map error



Fine-scale application of snow / ecohydro. models are in their infancy.
Recent advances are promising!
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Fine-scale application of snow / ecohydro. models are in their infancy.
Recent advances are promising!
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VISION

Toward a new model framework:

a virtual experimental forest
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 Co-developed with decision-makers to support
management decisions

= Multiple objectives related to water yield, climate,
drought and fire resilience, ecological diversity, etc.
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Alberta, Canada
2013-2014
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Trunk / wood Needle
temperature
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Impact of canopy edge solar exposure on
the thermal environment:
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Marmot Creek
Research Basin
forest gap experiment

(2013-2014)
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Marmot Creek Upper Clearing Study Site
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Two-source canopy model:

Conceptual forest gap model )
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ray-tracing

Canopy transmittance of SW and LW radiation:
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Modeled Solar Radiation in Gaps
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Modeled Net Radiation in Gaps
Net radiation = Net Shortwave + Net Longwave
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Small gaps (diameter = half tree height)
minimize net radiation & SW input

Seyednasrollah and Kumar (2014)



Circular forest gap radiation patterns
Melt season (mid-May) 5-day average
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Circular forest gap radiation patterns
Melt season (mid-May) 5-day average
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Raytracing of lidar-produced complex terrain and forest structure

Raytracing
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Hot spots and hot moments — when is this detail critical?

Solar radiation from airborne LiDAR
(local- to basin-scale)

How do we retain critical information

800 T
e .
S at regional / macrosystems scales?
600
4
Q
400
S

Musselman et al., (2013) Remote Sensing of Environment



How can fine-resolution dynamics be scaled to support
parsimonious simulations at regional to global scales?

Solar radiation modeled with LiDAR Aerial imagery
(regional to continental)

Musselman et al., (2013)
Remote Sensing of Environment

Available on your phone



How can fine-resolution dynamics be scaled to support
parsimonious simulations at regional to global scales?

Solar radiation modeled with LiDAR Aerial imagery Commercial satellite
(local- to basin-scale) (regional to continental)

Musselman et al., (2013)
Remote Sensing of Environment

Available on your phone Rittger and Musselman, in prep.



Community-led vision: Large-scale hydrologic and Earth System models to
improve forecasts & future projections of water resources.

Grouped Response Units

Example: soil moisture and drought
Courtesy: Martyn Clark



Model and remote sensing accuracy
is advancing but needs to remain
grounded by empiricism &

guided by stakeholders to gain trust
and encourage use.

Garameterization & scaling w/ large-scale data\
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Co-defining climate change refugia to inform effective
management of mountain headwater systems

A new $3.6M, 5-yr NSF-funded project lead by CU Boulder

Climate-change refugia — mappable landscape units sufficiently buffered
from climate change to enable the persistence of physical, ecological, and
sociocultural resources (Morelli et al. 2016).

Research Question:

Can sociocultural values, stakeholder needs, and scientific
advances be linked to co-define, map, and project climate
change refugia for headwater ecosystem services at the
urban-wildland interface?




Vision:

Refugia are delineable landscape units co-mediated by
energy and water
They can be modeled

Refugia are shaped by human behavior and linked to
human values
Surveys to understand preferences of diverse
sociocultural groups in Front Range corridor

Partner with decision-makers (maybe you?!) to
form an advisory committee to co-define relevant
refugia metrics

Refugia are temporary

Projections of when and at what regional  warming
level co-defined refugia persist or face risk will be used to
separate non-refugial areas from climate change refugia

Public Values Novel observations

Shaped by
human behavior
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Access

Tram measurement system traversing water, Bnafoa
energy and phenological gradients. : . nGr
Coming spring 2022 to Como Creek, 23 ];%rz?‘\*
below Niwot Ridge, CO Met!#8aps
- station

#1

station
#H2 Riparian
corridor

e Co-located observations of

 hydrometeorology,
e geophysical and biogeochemical soil states,

e plant and tree phenology

e Using mobile instrumentation, study plots, and
surface and sub-surface remote sensing techniques.




Hillslope Connectivity

Models tested against observations & Heterogeneity

Dynamic ecosystem simulator

Community Land Model (CLM)

*Hillslope hydrology

*Functionally Assembled Terrestrial
Ecosystem Simulator (FATES)

Climate model large ensemble

*Downscaled Community Earth System N s Multi-Model
Model (CESM2) Large Ensemble oV | Lerge Ensemble

Archive

Used to assess climate change refugia
for the Front Range headwaters.
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Likelihood of — Knowledge Co-Production
threshold exceedance /0 Public / Stakeholder

@ High

[ Moderate VField observations

0 Low / potential refugia \$ Earth System Models
Convergence theory

“I like to walk along
a forested stream”

‘Reduce sediment
loads by X%"

Improved management &
conservation of refugia [

“Ensure forest buffers
along streams”

N

Example:

Co-Developed Research Question:
How likely is historical forest structure along

riparian corridors to change this century?

Upper
elevations

elevations  Deliverable: Co-produced estimates of refugia (green) and vulnerability (orange and red)

for regional aspects and elevations over time to inform management decisions.



Summary

Forests influence snow by reducing accumulation via canopy
interception losses and delaying snhowmelt via shading.

Overly dense forests reduce snow accumulation and streamflow.

Forest manipulations / management provide multiple benefits.
Decisions must be made judiciously and informed by
process-based models co-developed across disciplines & w/
stakeholders.

There is great need for a community-developed forest model
capable of resolving variability in water, energy and plant physio.
relevant to scientists, stakeholders and societal values.
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