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Agenda

< Climate Change Concepts

Rapid Heating of the climate system
Future Climate Projections & Uncertainty

m Sources of Climate Projections Uncertainty
m Working with that Uncertainty

% Climate Toolbox

m Exploration and discussion of tools to extract and examine
historical and future climate data



The Climate System
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Climate Change Causing Greenhouse Gases Continue to Increase Rapidly in our Atmosphere

4300arbon dioxide concentration at Mauna Loa Observatory
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Full record ending April 10, 2022

Latest CO, reading: 420.40 ppm

Very long residence timel
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Earth’'s Accumulated Energy
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rO % Current climate change = rapid heating of

ur climate has accumulated our climate system
< Inrecent decades, our climate system is
4 ’ 722 ’ 183 ’ 680 heating at the rate of four atomic bombs
Hiroshima atomic bombs per second

of heat since 1970

@ Oceans absorbed heat equivalent to
n seven Hiroshima nuclear explosions

§ every second, expert says
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Understanding climate change
and its impacts



Climate Change Causing Greenhouse Gases Continue to Increase Rapidly in our Atmosphere

430Carbon dioxide concentration at Mauna Loa Observatory
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Full record ending April 10, 2022

Latest CO, reading: 420.40 ppm
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Scenarios of increases in atmospheric CO, during this century
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Source: O’Neill et al., Geosci. Model Dev., 9, 3461-3482, 2016



< Primary tools to project Global Climate Models (GCMs)
future climate

Horizontal Grid
< Represent and model
physical processes ’rh.a’r S—
gover'n The Ear"rh S CllmaTe (HelghtorPressure)
System

Physical Processes in a Model

[ S
.
| ]
-
]
]

solar  terrestrial
radiation radiation
i

< >20 "independent” s
modeling centers across e
the globe
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https://celebrating200years.noaa.gov/breakthroughs/climate_model/modeling_schematic.html



https://celebrating200years.noaa.gov/breakthroughs/climate_model/modeling_schematic.html

Climate Projections to Regional Impacts
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Climate Projections to Impacts:
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Downscaling of GCM Climate Projections

One main reason to do
downscaling is to have data at
the right scale to run an
impacts model

Bias correction + Increasing
spatial resolution

Different downscaled
datasets could be appropriate
for a particular assessment —
consult a climate scientist!

Global Scale

1 day, 1 year

Downscaling
TMAX
 ——

Local Scale

https://www.slideshare.net/VMMeu/1-patrick-willems-camino2015


https://www.slideshare.net/VMMeu/1-patrick-willems-camino2015

Climate Projections Bias Correction Example: Seasonal Precipitation

Observations

Raw GCM

Oct-Dec Bias Corrected Data
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Climate Toolbox Demonstration
e Quick intro to CTB

e Datasets in CTB - gridMET and MACA
Downscaled Climate Data

e Tools to examine historical climate trends






Sources of uncertainty in
climate projections



Climate Variability

=  Fluctuations (ups and downs around a long-term mean) in climatic conditions on
time scales of months, years, decades, centuries and beyond

1 MULTIVARIATE ENSO INDEX

Change in Air Temperature Since 1880
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Temperature

< Inter-model differences
contribute significantly
to the spread in future
projections

< Emissions scenarios
become important
largely after
mid-century

I llInternal variability

B \odel spread
B RCP scenario spread

Uncertainty in Europe decadal mean DJF temperature
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Source: Ed Hawkins; https://www.climate-lab-book.ac.uk/2013/sources-of-uncertainty/



https://www.climate-lab-book.ac.uk/2013/sources-of-uncertainty/

PPZCipiTGTiOH Uncertainty in Europe decadal mean DJF precipitation

% Inter-model differences
and climate variability
contribute significantly
to the spread in future
projections

% Emissions scenarios have
a very limited influence
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https://www.climate-lab-book.ac.uk/2013/sources-of-uncertainty/

Uncertainty from emission scenarios
and inter-model differences



POSSIBLE FUTURES

The Intergovernmental Panel on Climate Change (IPCC) uses scenarios called pathways to explore
possible changes in future energy use, greenhouse-gas emissions and temperature. These depend
on which policies are enacted, where and when. In the upcoming IPCC Sixth Assessment Report,

the new pathways (SSPs) must not be misused as previous pathways (RCPs) were. Business-as-

usual emissions are unlikely to result in the worst-case scenario. More-plausible trajectories make

better baselines for the huge policy push needed to keep global temperature rise below 1.5 °C.

IEA* projections
suggest a more
plausible path.
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Worst-case
no policy
(SSP5-8.5)%

Average no policy
(SSP3-7.0)

Weak mitigation
(SSP4-6.0)

Modest mitigation
(SSP2-4.5)

1.5 °C

Highly unlikely
Often wrongly
used as ‘business
as usual’

Unlikely
Reversal of
some current
policies

Likely
Given current
policies

Mitigation required to meet Paris goals
=20 s e Jrresseeeeeneey e P fresesessenesees | (SSP1-1.9)
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*The International Energy Agency (IEA) maps out different energy-policy and investment choices. Estimated emissions are shown for its Current
Policies Scenario and for its Stated Policies Scenario (includes countries’ current policy pledges and targets). To be comparable with scenarios for
the Shared Socioeconomic Pathways (SSPs), IEA scenarios were modified to include constant non-fossil-fuel emissions from industry in 2018.
tApproximate global mean temperature rise by 2100 relative to pre-industrial levels.

#SSP5-8.5 replaces Representative Concentration Pathway (RCP) 8.5.

Hausfather & Peters, 2020




Differences in temperature projections across emission scenarios become important after 2050

Jan-Dec (Annual) Mean Temperature Difference From Average

Southwest Colorado
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1980 2000 2020 2040 2060

- Lower Emissions (RCP 4.5) Avg. Lower Emissions (RCP 4.5) Range
- Higher Emissions (RCP 8.5) Avg. Higher Emissions (RCP 8.5) Range
== Historic Avg. @ Historic Range




Emission scenarios have no significant impact on total precipitation projections

Jan-Dec (Annual) Precipitation Percent Difference From Average

Southwest Colorado

1980 2000 2020 2040 2060

== Lower Emissions (RCP 4.5) Avg. Lower Emissions (RCP 4.5) Range
- Higher Emissions (RCP 8.5) Avg. Higher Emissions (RCP 8.5) Range
== Historic Avg. @ Historic Range




Changes in Annual Temperature and Precipitation in southwestern Colorado
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30-year periods with the median year centered on
2035, 2050 and 2070 compared to 1971-2000
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Uncertainty, Complexity and Constraints: How Do We
Robustly Assess Biological Responses under a Rapidly
Changing Climate?
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Working with Climate Projections Uncertainty




Scenario-Based Climate Change Impact Assessment

Select Extract climate
. appropriate Select a few data or develop
Climate | projections data divergent climate climate information
and future time scenarios from selected
horizon scenarios
Generate el
. : assess
biological :
potential
responses for
: future
each climate s
. conditions &
scenario J .
trajectories
Select relevant ; Select appropriate
biological Identify climate variable(s),
Ecology resource or _important biological
ecological climate drivers response(s) and

Figure 1. Process flow diagram of a typical approach for conducting biological impact assessments under different future
climate scenarios. The curved arrows demonstrate the iterative (i.e., non-linear) process of integrating climate and ecology

climate P

Article
Uncertainty, Complexity and Constraints: How Do We

Robustly Assess Biological Responses under a Rapidly
Changing Climate?

methods in conservation projects (e.g., Case Study 1 and 2 in Appendix A).




Colorado: Annual
2020-2050 relative to 1985-2015

Selecting and working
with specific future
climate scenarios (or
climate futures)
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TNC'’s Colorado Climate Impacts & Opportunities Report, 2018



Climate Toolbox Activity

Future Scatter Plot

Future Box Plot

Future Time Series

Climate Mapper for Spatial Plots and Data
Data Download






