Precipitation has increased across much of the region in all seasons in recent decades. Climate models are projecting significant increases in winter and spring precipitation and plausible decreases in summer precipitation.

Warmer temperatures are expected to offset increases in future precipitation and affect water demand and availability.

Informing adaptive grassland management in the North Central region where winds are strong, the grazers are good-looking, and the temperature… is above average.
Implications for Grasslands Management

Changing seasonal patterns of water availability, which could include wetter springs and drier late-summers and falls, will decrease windows for conducting prescribed burns. It could increase wildfire risk and may decrease availability of late-summer and fall forage for livestock and wildlife.

The projected increase in flash droughts and hotter droughts may result in direct mortality of wildlife and plant species in their current range. Improved habitat connectivity or translocation may be required to allow species to migrate to suitable conditions.

Incorporating greater flexibility in the timing and application of grassland management practices will be important for responding to increased climate variability.

Selected Resources

The **Climate Toolbox** is a collection of web tools for visualizing past and projected climate and hydrology of the contiguous United States, including:

- The **Historical Climograph** shows monthly average climate for a location.
- The **Historical Climate Tracker** which shows graphs and trend lines for historical climate variability for a location.
- The **Climate Mapper** which maps historical and future climate information across multiple sectors.
 - *The output from this tool is compatible with applications on GIS-type analytical platforms.*

Contacts

Dr. Imtiaz Rangwala, Climate Science Lead, North Central Climate Adaptation Science Center (NC CASC), imtiaz.rangwala@colorado.edu

Dr. Heather Yocum, Principal Investigator, NC CASC, heather.yocum@colorado.edu

Dr. Christy Miller Hesed, Regional Climate Adaptation Scientist, NC CASC, christine.hesed@colorado.edu

Check out the synthesis report here!