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Where is it now?
Lots of location data!
On-line and government repositories.

Weed mapping, 
monitoring plots, 
museum data, 
citizen scientists, 
etc.

GBIF

www.gbif.org

www.eddmaps.org

iMapInvasives



• Distributions often are not 
stable.

• US-RIIS includes ~4000 
introduced (non-native), 
established (reproducing) 
vascular plant species 
(Simpson et al. 2022) .

• People don’t look for 
invasive plants 
everywhere.

• Where should we look for 
what species?

Jarnevich et al. 2022. Cha 10 in Invasive Species and Global Climate Change. 
CABI.

Number of non-native 
plants in National Parks

Williams et al. 2024. USGS 
data release.

Invasive species are arriving and spreading 



How do we forecast risk?

  



o Habitat suitability 
models for 221(259 
soon) manager selected 
terrestrial plants for 
CONUS.

o Co-produced with 
management agencies 
to serve map products 
and tabular summaries 
across species for 
management units.

o Ranked risk summaries 
across species for a 
unit, integrate 
suitability predictions 
with known 
occurrences.

Where might species be found?

Invasive Species Habitat Tool (INHABIT)

gis.usgs.gov/inhabit



Doorstep

EDRR

Preliminary Information-Subject to Revision. 
Not for Citation or Distribution.

Watch Lists



Emphasis on non-native presence

Cheatgrass 
presence



But we care about where things are 
abundant.

Yokomizo et al. 2009, Ecol App 19: 376-386

Photos by C. 
Jarnevich

Beaury et al. 
2023, Bio 
Invasions

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



Abundance 
in climate 
space

Jarnevich et al. 2021 Div. Dist.



INHABIT
• Aggregated data
• Occurrence = wherever the plant is 

found
• Medium abundance = >5% cover

• 217 species

• High abundance = >25% cover
• 189 species

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Methods



Environmental Data (53 Predictors)

Topography (4):
- Topographic 

diversity
- Distance to 

water

Temperature (11):
- Warmest quarter 

temp
- Minimum winter 

temp

Landscape water (6):
- Water recurrence
- Annual flow

Substrate (9):
- % clay
- % sand

Biotic 
interaction (2):
- Tree cover

Atmospheric water (18):
- Precipitation
- Evapotranspiration

Radiation (1):
- Solar 

insulation

Disturbance (2):
- Burn frequency
- Human 

modificationImages from Openclipart (image 
221709, fire image 2242). 



How many species do we model?

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



Continuous output for occurrence, medium abundance, and high 
abundance maps for Tribulus terrestris (puncture vine)

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Visualization of abundance maps

Relative suitability for:

Occurrence >5% cover >25% cover

High

Low



Preliminary Information-
Subject to Revision. Not 
for Citation or 
Distribution.

Combined thresholded models – Puncture vine (Tribulus terrestris)

# counties with suitability: 3109, 1894, 1813 # counties with suitability: 3059, 648, 545

Suitability for high abundance

Suitability for medium 
abundanceSuitability for occurrence

Low/no suitability

Suitability for abundance



Analysis of Environmental Predictor Variables

• Top performing individual 
predictors: human modification & 
minimum winter temperature

• Most influential predictor groups: 
disturbance, temperature, 
atmospheric water

• Lifeforms don't really differ in 
predictor group contribution 
of importance

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Demetra 
Williams

Keana
Shadwell

Williams, D., K Shadwell, et al. In review. Div. Dist.



What are the forecasting 
limitations?

  



Breeding bird survey data
• Model training data: 1970s
• Model testing data: 2010s
• Climate and habitat predictors

Sofaer et al. 2018, Global Ecology 
and Biogeography  



Change in range size was not reliable

Sofaer et al. 2018. Global Ecology and Biogeography



Poor prediction where change occurred

Sofaer et al. 2018, Global Ecology 
and Biogeography  

Sofaer et al. 
2018. Global 
Ecology and 
Biogeography



Others have found 
the same thing.

Sax et al. 2013

What restricts a species’ range?

Red = native range
Yellow = naturalized or adventive
Blue = botanic garden/ commercially sold



What can we do?

  



Buffelgrass in Saguaro 
National Park

• African C4 perennial bunchgrass
• Globally invasive
• Potentially alter fire regime

– Continuous fuel for fire
– Ecosystem not fire adapted



Climate context: changing suitability?
• SNP conditions with global response curves
• Solid: 1981-2010 conditions
• Dotted: 2055 based on 15 GCMs for RCP 8.5



Number of species with abundance suitability
(of 138 species using US locations)

Shifts in predicted range centroids
(Current to +2C)

Preliminary Information-Subject to Revision. 
Not for Citation or Distribution.

Shifting invasives
Annette

Evans

Western species are coming!



Aquatic Invasive Species Modeling

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Asian Swamp Eel, USGS

Phragmites, USDA

Quagga Mussel, EPA/Buffalo State

Developing predictor layers 
for the Nation

Grace Henderson (USGS FORT)
Catherine Jarnevich (USGS FORT)
Wesley Daniel (USGS WARC)
Ian Pfingsten (USGS WARC)
Peder Engelstad (CSU in cooperation 
    with USGS FORT)



Preliminary Information-Subject to Revision. Not for Citation or Distribution.

High

Low

AQUA-INHABIT

• Fit models for lakes and for steams
• Apply to future climate and land use



An example: Implications for invasion threat
from climate change and tegu Lizards

• Work with Amy A. Yackel Adams, Amanda M. 
Kissel, Andrea F. Currylow

• Extending previous modeling work, comparing 
with thermal studies, over-winter study, and 
extended range documentation.

Amanda 
Kissel



Black & White Tegu Lizard Red Tegu Lizard Gold Tegu Lizard

Climate variablesThree Tegu species 
appear to occupy 
distinct geographic 
and climatic niches

Preliminary Information-Subject to Revision. Not for Citation or Distribution

B&W 
Tegu 

Red 
Tegu

Gold 
Tegu

B&W 
Tegu 

Red 
Tegu

Gold 
Tegu



Current

+ 2oC

+ 4oC

Preliminary Information-Subject to Revision. Not for Citation or Distribution

Black & White Tegu Lizard Red Tegu Lizard Gold Tegu Lizard
Species Distribution Models for North America

Salvator merianae Salvator rufescens Tupinambis teguixin



Preliminary 
Information-

Subject to 
Revision. Not 
for Citation or 
Distribution

Black and White Tegu sightings with current climate conditions



Preliminary 
Information-

Subject to 
Revision. Not 
for Citation or 
Distribution

Black and White Tegu sightings 2C climate scenario 



Black and White Tegu sightings 4C climate scenario 



• Areas where Tegu suitability was predicted to be high from Jarnevich 
et al. (2018) are indeed suitable

• Important to consider all three species for risk assessment because of 
climatic distinctions between the species
§ True physiological differences or competitive exclusion?

• B&W Tegu ability to thermoregulate facilitates advance northward
§ Reptiles that can self-thermoregulate (like endotherms) likely to 

be ‘better’ invaders (e.g., Burmese python)

• Suitability in South Florida for B&W Tegu declines but increases for 
the other 2 Tegu species 

• Some SE states have passed regulations banning B&W Tegus but 
climate change scenarios an increase of areas at risk (i.e., North 
[B&W] and West [Red Tegu])

Tegu conclusions

Preliminary Information-Subject to Revision. Not for Citation or Distribution



• Northern edge of Sonoran Desert
– Sparse vegetation
– Not fire adapted

How big is the problem?

What is the influence of uncertainty around 
parameters?

What will it take to control buffelgrass?

How best to allocate limited resources on the 
landscape to control buffelgrass?



Uninvaded

Detected 
Seedbank

Detected 
<1%

Detected  
1-10%

Detected  
10-50%

Undetected 
Seedbank

Undetected 
<1%

Undetected 
1-10%

Undetected 
10-50%

Detected 
>50%

Undetected 
>50%

Converted

Treated 1yrTreated 2yr

Increasing buffelgrass cover

Inventory 

Treatment Fire

Seedbank 
mortality

*Dashed lines denote treatment or detection failures

State and Transition Simulation Model

Jarnevich et al. 2022 Biol. Cons.



How to allocate resources?

Eradicate target 
is more efficient 
than 10% target

Wilder et al. 2021 FEVO

Fire regime alterations:               
Santa Catalina Mountains

Jarnevich et al. 2022 Biol. Cons.



WISDM: Workbench for Integrated Species 
Distribution Modeling

• Seed establishment is based on 
underlying suitability, which is 
constant.

• New package to automatically interact 
with ST-SIM

Partnership between Apex 
RMS, USFS, and USGS.

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



WISDM

• Started development within 
SyncroSim in 2021

• Updating modules from SAHM

• Beta version 
– Data preparation
– Variable reduction
– Model algorithms
– Outputs
– Visualization

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



Preliminary Information-
Subject to Revision. Not 
for Citation or 
Distribution.



Predicted invaded area increases –
 Will this influence outcomes?

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



How do we prioritize?

  



Post fire non-native plant abundance
• Aggregated 26,729 

vegetation plots

• Short lived forbs and 
C3 grasses had 
significantly higher 
cover after fire.

• Climate variables 
were the most 
important in 
predicting their 
post-fire cover.

Prevey et al. 2024 Biol. Invasions



Prevey et al. 2024, 
Biol. Invasions



2. 3.1.
• Human Impact

• Disturbance

• Nonnative Species 
Richness

• Climate Change 
Projections

• High Priority Sites

Identify management 
priorities

Generate data 
layers

Create user-specific 
site prioritization maps

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



Data Layer Data Source
Human Impact / Disturbance Remoteness U.S. Census, TIGER, NTD, NED

Landscape Condition NatureServe
Burn Frequency MTBS
LandTrendr: Year of Disturbance

Landsat, Google Earth EngineLandTrendr: Magnitude of Disturbance
LandTrendr: Duration of Disturbance
LandTrendr: Pre-Disturbance Greenness

Nonnative Species Richness Amphibians

GBIF, EDDMaps, NAS, SPCIS, 
iMapInvasives

Fish
Invertebrates
Mammals
Mollusks
Plants
Reptiles

Climate Change: Projected 
Magnitude of Change

Mean Annual Temperature

ClimateNAMean Annual Precipitation
Mean Temperature of Coldest Month 
Summer Heat Moisture Index

High Priority Resources Imperiled Species Richness NatureServe
User-Supplied Layers

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



Where are species now?

  



Primary objective: Create a highly accurate map of cheatgrass 
cover that can be used for targeted management

  

West et al. 2017, International Journal of Applied Earth Observation and Geoinformation





Cheatgrass control

• Used model to obtain treatment 
funding

• Aerial application where >50% 
probability and patch size >= 2 ac 

West et al. 2017, International Journal of 
Applied Earth Observation and Geoinformation



Pre- (2016) and 
Post- (2017) 
treatment with 
Imazapic via 
helicopter using 
model

Jackie Roaque
Rangeland Management Specialist
Forest Service
Medicine Bow-Routt National Forests, 
Laramie Ranger District



Cheatgrass flowering predictions Cheatgrass senescence predictions

Red brome flowering predictions Red brome senescence predictions

Phenology 
forecasting tools 
for management 
and detection of 
invasive grasses

• Red brome phenology forecast webtool: 
https://usanpn.org/data/forecasts/Red_brome

• Manuscript: Prevéy, JS, et al. In submission. Phenology forecasting 
tools for detection and management of invasive annual grasses. 
Ecological Applications.

• Plant phenology is highly variable and influenced 
by temperature, elevation, and topography.

• We developed predictive, mechanistic 
phenological models to improve detection of 
invasive grasses across elevational gradients as 
the climate changes.

• Phenology models paired with species 
distribution/abundance maps can help managers 
address when and where to focus management 
efforts.

Preliminary Information-Subject to Revision. Not for 
Citation or Distribution.

Janet
Prevéy



Changes in NDVI between peak greenness dates 
and senescence dates correlated with on the 
ground cheatgrass cover estimates of in the burned 
area.

R2 = 0.25
p < 0.0001

Legend SpatialData.GIS.states

jun05s2mjul2

Value High : 0.5

Low : -0.499992

reclasscheatm

Value 1 2 3 4 5
Decreasing NDVI Increasing NDVI

Case study: Using phenology predictions to map 
cheatgrass after wildfires

In collaboration with 
Nick Young, NREL, CSU

We differenced NDVI values from 
Sentinel-2 satellite imagery selected 
during predicted peak greenness and 
senescence dates to detect cheatgrass 
following a fire in southern Wyoming.

July 10th 2021

June 15th 2021

Preliminary Information-Subject to Revision. Not for 
Citation or Distribution.
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