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Assessing the future of sagebrush
ecosystems to inform climate adaptation
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= Future ecologlcal drought in sagebrush ecosystems (Danlel)

;  Soil moisture modeling approach

- * Changes in soil moisture patterns

.+ Future shiftsin ecological resistance & resilience
Impllcatlons for sagebrush plant communities (Martin)

e e Plant community modeling approach

3%:%*3 * Changes in plant functional types

M * Implications for sagebrush habitat

,t
. Coping with uncertainty to support adaptation investments (John)
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Assessing the future of sagebrush
ecosystems to inform climate adaptation
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= Future ecologlcal drought in sagebrush ecosystems (Danlel)
'"  Soil moisture modeling approach

- * Changes in soil moisture patterns
4 . Future shiftsin ecological resistance & resilience
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Simulation modeling approach — SOILWAT2

« Complexinteractions between weather, vegetation, and soils in drylands

* Tight links between moisture availability and ecosystems, e.g., wildfire, biomass
production, grazing

* Ecological drought through lens of soil moisture

M Holdrege




Simulation modeling approach — SOILWAT2

* Elevation and precipitation can be useful but do often
not sufficiently capture full range of ecological drought

e Model criteria for soil moisture simulations

1. Frequent temporal resolution: flash drought;
moisture storage

2. Site-specific soil conditions: moisture vs. tension;
plant available moisture

3. High resolution across soil profile: seasonal &
spatial dynamics

4. VVegetation structure and physiology, roots

5. Responses to climate change: CO2-fertilization;
shifts in structure and physiology of vegetation

Preliminary Information-Subject to Revision. Not for Citation or Distribution.
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Simulation modeling approach — SOILWAT2

Daily Soil Biomass
Weather Properties Root depth

SOILWAT2

l

Daily water balance &
plant available water
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Sagebrush ecohydrologlcal hiche &
future drought




Historical trends in ecological drought

; Annual Temperature Climate trends
(last 20 years vs. early 20th century; NCA5)

 Trends of soil moisture over 1976-2019

* Increasesin soil moisture in NC
Temperature Change (°F) * Widespread decrease in soil
ﬂs 010 om moisture (matches overall
trends in T & PPT)
« Stronger decreases in shallow

soil moisture (matches shift of
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’ ‘4 Summer Precipitation
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Future changes in ecological drought
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And larger increase of temperature when
soils are dry (particularly in northern
Great Plains) > Greater stress
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Future changes in ecological drought

Robust signals in changes of dry

" ... Total dry days - Top soils ... Longest dry period - bottom soils
SOILlS i f - o : L { o : :

> Some areas of increase, some
areas of decrease (including NC)

Bradford et al. (2020) GCB



Sagebrush ecohydrological niche

Soil water potential (MPa)

Soil water potential (MPa)
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Seasonal water dynamics
defined by cool season recharge
of soil water

Summer dry period in shallow
soil layers

More transpiration from deep
than shallow soil layers

Sagebrush ecohydrological

niche: utilization of deep,
seasonally-stored water

Schlaepfer et al. (2012) Ecohydrology



Insights about future drought in sagebrush
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Insights about future droughtin sagebrush
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Ecological resilience & resistance to cheatgrass

Resilience (historical)

e R&Rindicators (Chambers et al.)
o Resistance to cheatgrass invasion
o Resilience to recover from stress (e.g.,
drought, fire)
o Categories: L, ML, M, H+MH

e Defined set of metrics
o Ecological drought
o Responsive to climate change
e Developed predictive models of ecological
resistance and resilience indicators

e Future projections based on climate models

Schlaepfer et al. (2025) Ecological Applications



Ecological resilience & resistance to cheatgrass

-~ Resilience (historical) Future (end 21st; RCP4.5) Projected change

other decrease other stable
robust decrease . robust stable

Schlaepfer et al. (2025) Ecological Applications



Ecological resilience & resistance to cheatgrass

" Projected change

e Most of the area that s historically Low

remains Low (gray)
e Other categories either decreased (purple) or

remained the same (gray)
e The Moderate R&R category had the most
widespread decreases (particularly WY & MT)

> Climate change amplifies restoration challenge

: e

other decrease other stable
robust decrease - robust stable

Schlaepfer et al. (2025) Ecological Applications




Ecological resilience & resistance to cheatgrass

Schlaepfer et al. 2024 ScienceBase (DOI: 10.5066/P928Y2GF) @i,“.' *”“’f;!g"ﬁ@

* https://ee-martinholdrege. prOJects earthenglne app/view/futurerr
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e Extent and time

* CONUS (4/10-km
gridMET/MACA grid)

* Historical and future 1980-2100
e Dataset

* Daily soil moisture for multiple
soil depths

* Ecological drought metrics

e Data dissemination via Climate
Toolbox

* Funded by USGS CASC

Preliminary Information-Subject to Revision. Not for Citation or Distribution.
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* Ecological metrics to inform long-term
management decisions (e.g., Chenoweth
et al. 2023)

* Sensitive to climate change
* Overall conditions
* Seasonal variability

* Seasonal timing
* Drought characteristics

* What information related to future
ecological drought would be useful for
you?

Preliminary Information-Subject to Revision. Not for Citation or Distribution.
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‘M Implications for sagebrush plant communities (Martin)
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Plant community modeling approach
Changes in plant functional types
Implications for sagebrush habitat




Modeling Framework

Soil Moisture

Daily Soil Biomass
Weather Properties Root depth

SOILWAT2

l

Daily water balance &
plant available water

Bradford et al. 2014, Bradford et al. 2020



Modeling Framework

Soil Moisture Plant community
Daily Soil Biomass Plant establishment, growth,
Weather  Properties Root depth mortality, biomass, density

|

\ ]
A
SOILWAT2 | STEPWAT2 | ¢ ﬁ
Daily water balance & Transpiration by plant
plant available water functional group

Bradford et al. 2014, Bradford et al. 2020 Palmquist et al. 2018, Holdrege et al. 2024a



Climate change implications for Sagebrush

(c) A Sagebrush biomass, 2070-2100
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Palmquist et al. (2021)

* Big sagebrush likely to remain
climatically viable within much
of the biome

e Potential declines in some
areas

(Schlaepfer et al 2011, Still & Richardson 2015, Renwick et al. 2018)



Climate change implications for Perennial Grasses
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A Biomass (%) %,

-100 -40 -25 -10 -71.5

Future temperatures more consistent with warm-season (C4) perennial grasses than
cool season (C3) perennials (Havrilla et al. 2023)

Cool season grasses may decline and warm season grasses might increase (paimquist 2021)



Climate change implications for Cheatgrass

Change in Cheatgrass biomass

o Historical trend of cheatgrass o - RCP4:5,2071-2100
invasion is very likely to i\ '
continue ,

« Projected increases wildfire Ry AT
frequency (at least in many / \
areas) likely to exacerbate
cheatgrass invasion
problems Q. ool

(O T R T | |
-60-30 0 30 60 |

A Biomass (gm"z) . .

Preliminary Information-Subject to Revision. Not for Citation or Distribution. -30 0 30




Sagebrush Ecological Integrity

Prepared in cooperation with the Western Association of Fish and Wildlife Agencies and the
U.S. Fish and Wildlife Service

A Sagebrush Conservation Design to Proactively Restore
America’s Sagebrush Biome

——r
Core Sagebrush \ i LS
Areas 2020 ¢ = @5}}; >
e, T ey .~.Q
N A e, e W
e “ BGS e S0
otand . ».

The Sagebrush Conservation Design
helps identify intact sagebrush areas,
and primary threats to the ecosystem
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Open-File Report 20221081

U.S. Department of the Interior
U.S. Geological Survey

Doherty et al. (2022)



Sagebrush Ecological Integrity

ZUSGS

science for a changing world

Prepared in cooperation with the Western Association of Fish and Wildlife Agencies and the
U.S. Fish and Wildlife Service

A Sagebrush Conservation Design to Proactively Restore
America’s Sagebrush Biome

Core Sagebrush
Areas 2020

VUAZHING TON

e vl s SEIl ~ Sagebrush (+) Perennial grasses (+),
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Open-File Report 20221081

U.S. Department of the Interior
U.S. Geological Survey

Doherty et al. (2022)




Sagebrush Ecological Integrity

High SEI: Core Sagebrush Area (CSA)
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Sagebrush Ecological Integrity

ZUSGS

science for a changing world

Prepared in cooperation with the Western Association of Fish and Wildlife Agencies and the
U.S. Fish and Wildlife Service

A Sagebrush Conservation Design to Proactively Restore
America’s Sagebrush Biome

Core Sagebrush
Areas 2020

i YRR AN S . Future SEI ~ Sagebrush*/ (+), Perennial grasses *A (+),
% o e Annual grasses *A (-), Conifers (-), Human modification (-)
? j—
-CoreSa'ehud:A'm

Open-File Report 20221081

us. Depam_nentonhe Interior (A = SimUIated Change
e in cover from STEPWAT2)




Projected changes in SEI class

RCP4.5, 2071-2100

stable Core
~~ Sagebrush Area

| Future
S Core Growth Other
o Sagebrush | Opportunity  Rangeland
s Area

Area Area
Sagebmsh Stable Decline
Area

Decline

R

5 Growth

& Opportunity [ [g[e =R
=

O

Stable Decline

Other

Rangeland JUESCESCM  Increase Stable

Holdrege et al. (2024)

Area

How will the abundance of
sagebrush ecological

integrity classes change in
the future?




Climate uncertainty in our projections

RCP4.5, 2071-2100 350‘ How consistent are these
‘gjj changes across climate

E 504 scenarios?

¢ ’
ro b u St Stable CSA

pr__ (robust agreement)
stable Stable CSA

(non-robust agreement)
C ore Loss of CSA

2 (non-robust agreement)
SageerSh Loss of CSA
Area

|
|
|
|
|

-

(robust agreement)

Stable (or improved) GOA
(robust agreement)

Stable (or improved) GOA
(non-robust agreement)

Loss of GOA
(non-robust agreement)

. A S Loss of GOA
. ;\ (robust agreement)

. Other rangeland area

Holdrege et al. (2024)



Main findings: Climate impacts on
sagebrush ecological integrity

Projected Change

e ~2/3 of Core Sagebrush Areas are projected 3, RCP4.5,2071-2100

to remain climatically suitable to stay Core R
(RCP4.5, 2071-2100)

 Loss of Core driven by projected decreases
in sagebrush and/or increases in annuals

* Substantial variability among climate

scenarios, time-periods, and global climate g . S oo " o
models, but general trends are similar SR ‘ il i

\ Sagebrush

: Stable Decline Decline
Area

Growth

[OVIvtig Increase Stable Decline
Area

Current

Other
Raneeland Increase Increase Stable

Area

Publication: Holdrege et al. 2024, Rangeland Ecology & Management
(https://doi.org/10.1016/j.rama.2024.08.003)
Data Release: https://doi.org/10.5066/P13RXYZ)


https://doi.org/10.1016/j.rama.2024.08.003
https://doi.org/10.5066/P13RXYZJ

Web-app for visualizing these results

https://ee-martinholdrege.projects.earthengine.app/view/futuresei

Earth Engine Apps

Sagebrush Ecological
Integrity Projections

Description

This app visualizes current and projected
future sagebrush ecological integrity (SEI).
Projections of SEI are based on combining
remotely sensed products (used for
estimating current SEI) and results from a
simulation model (STEPWAT2). The
simulation model allowed us to estimate
how climate change, wildfire, and invasive
annuals interact to alter the potential
abundance of key plant functional types
that influence sagebrush ecological
integrity: sagebrush, perennial grasses, and
annual grasses. These results provide a
long-term perspective on the vulnerability of
sagebrush ecosystems to climate change
and may inform geographic prioritization of
conservation and restoration investments.

Data underlying these visualizations are
available from ScienceBase
(https://doi.org/10.5066/P13RXYZJ).

Further details about the research that

developed these projections are available in

Holdrege et al. (2024)
https://doi.org/10.1016

More information about the broader

Sagebrush Conservation Design effort can
be found at:
sagebrush

How to Use

Separate layers can be selected on both
sides of the slider to allow for comparison.
Use the 'Select Variable' drop-down menu to
select the variable type to display on the
map, use the 'Select Climate Scenario' drop-
down menu to select the time-period and
climate scenario. Use the ‘Select Modeling
Assumption' drop-down to select one of
four modeling assumptions made in the
simulations (this is for users interested in
understanding the impacts of some of our
decisions, see Holdrege et al. (2024) for
more details). The lower drop-down menu
lets you select layers showing SEI, and
related inputs for historical (2017-2020)
conditions (see Doherty et al. 2022).

Add plain background

‘/and state outlines

Legends:

SEl Class

M Core Sagebrush Area (CSA)
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[l Stable (or improved) GOA
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Layers that are Projections
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~
Default &
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Select Variable (plotted on top):
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Map Satellite
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Select Climate Scenario:

RCP4.5 (2071-2100) &

4

R Select Modeling Assumption:
P : " Default 5
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Compare:

* Response variables

* Climate-scenarios

* Modeling assumptions



https://ee-martinholdrege.projects.earthengine.app/view/futuresei

Next steps: Combining SCD & R&R datasets

Future Sagebrush Ecological Integrity

Core Grow Other

Combining future Sagebrush PR High quality & lower risk Low quality but h ential
9 Monitor & restore Opportunity areas for

restoration.

Ecological Integrity and R&R
to inform prioritization of
conservation and

restoration actions EE,
oc
Q® Moderate

—
>
et
>
LL

High quality & high risk Low quality & low potential

L Prioritize for protection Unlikely restoration success.

il from disturbance Consider potential transition.

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



Next steps: Combining SCD & R&R datasets

Projected SEI Class

Projected Resilience

LT

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Future R&R

Future Sagebrush Ecological Integrity

Core Grow Other
High High quality & lower risk Low quality but h ntial
Monitor & restore Opportunity areas for
restoration.

Moderate

High quality & high risk Low quality & low potential
Prioritize for protection Unlikely restoration success.
o from disturbance Consider potential transition.




Next steps: Interactions between grazing
intensity, wildfire and climate change

Grazing sustainability

* How will the sustainability of grazing change with
climate change?

* Can altering grazing intensity mitigate climate
induced vegetation changes and wildfire?

Targeted grazing to minimize cheatgrass

* What do we know about the effectiveness of
targeted grazing of cheatgrass?
 Can grazing be used as a tool to mitigate

cheatgrass-fire-cycle under climate change
(Project lead by Kyle Palmquist, Marshall U.)

Preliminary Information-Subject to Revision. Not for Citation or Distribution.



Assessing the future of sagebrush
ecosystems to inform climate adaptation
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@é Coping with uncertainty to support adaptation investments (John)




A looming challenge: assess the wholistic
Impacts of climate adaptation investments

Current Future

Core Sagebrush
Areas

2020

Portland
[

San Francisco

5
- Core Sagebrush Area

Growth Opportunity Area et oLas Vegas

i
7

0 80 160 320 480 640 @

Other Rangeland Areas Miles

Doherty et al. (2022)



Sources of uncertainty in climate adaptation

' : Management
Climate Ecological .
uncertainty m—) uncertainty ) effectlve!’less
uncertainty

N
b» . -

Photo: John Gordon Ross, USGS Photo: Bureau of Land Management



Climate

uncertainty

Temperature across

— — —
o N I
1 1

Mean Temperature (°C)

oo

[ Mfﬁm

{ the sagebrush biome

RCP 8.5

RCP 4.5

1975 2000 2025 2050

Year

Based on data from Abatzoglou (2013) and
Abatzoglou and Brown (2012)

2075

Uncertainty in how the climate
will respond to a given amount
of forcing

Partially captured by comparing
scenarios & climate models

Relatively well recognized and
often well addressed



Ecological
uncertainty

Historical and projected Core Sagebrush Area

. Uncertainty in how ecosystem will response

© .

< 20- to altered climate.

S

.g

© 159 CO; fertilization Often not well estimated

< | T

< 1 e

g 10+ _ We considered uncertainty from some ecological

S processes (e.g., CO, fertilization might moderate ~

®)) No CO, fertilization

@ 15% of core losses).

N 5

o

o L) L)

O We really need multiple ecological models!
1975 2000 2025 2050 2075

Year

Based on data from Holdrege et al. (2024) and
Doherty et al. (2022)



Management
ws) effectiveness
uncertainty

Climate Ecological
uncertainty m—) uncertainty

Uncertainty about how ecosystem
services will respond to management
actions.

Rarely considered

In sagebrush ecosystems, these
management actions might be fire
suppression, post-fire restoration,
invasive treatments, etc.

Photo: Bureau of Land Management



Management
effectiveness
uncertainty

One example of management action
might be assisted relocation of plant
species.

— (4 grass assisted migration

N
o
[

- No C4 grass migration

—
(@)
(]

Loss of Core Sagebrush is reduced by
~9% if we enable C, grass expansion
(regardless of climate uncertainty)

—
o
(]

These results could be integrated into a
cost-benefit analysis of climate

adaptation investments

1975 2000 2025 2050 2075 « Costs of C, grass assisted migration
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Informing adaptation decisions requires
understanding all these sources of uncertainty

Climate Ecological Management
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" Drought impacts in the northcentral region:
* NC may be relatively well positioned to maintain seasonal soil moisture patterns
* On average, potentially wetter soils but elevated stress from large temperature increases during dry soil periods

"

* Future changes in big sagebrush impacts vary spatially and are relatively modest in most of the NC region
* Perennial grasses may shift from cool-season to warm season
* |nvasive annuals may increase
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* . Droughtimpacts in the northcentral region:
* NC may be relatively well positioned to maintain seasonal soil moisture patterns
| » Onaverage, potentially wetter soils but elevated stress from large temperature increases during dry soil periods

| Plant community impacts:
g ° Future changes in big sagebrush impacts vary spatially and are relatively modest in most of the NC region
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"% « |nvasive annuals may increase

1 Implications for sagebrush ecosystems:
¢ * NC region supports some of the most climate resilient high quality sagebrush habitat l
* However, rising temperatures are also expected to decrease R&R in most of the NC region
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Take-home messages

Drought impacts in the northcentral region:
* NC may be relatively well positioned to maintain seasonal soil moisture patterns
N * On average, potentially wetter soils but elevated stress from large temperature increases during dry soil periods

w1 Plant community impacts:

' Future changes in big sagebrush impacts vary spatially and are relatively modest in most of the NC region
Perennial grasses may shift from cool-season to warm season

Invasive annuals may increase

% Implications for sagebrush ecosystems:
#t + NC region supports some of the most climate resilient high quality sagebrush habitat
* However, rising temperatures are also expected to decrease R&R in most of the NC region
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Climate projections for the sagebrush region

* Increases in annual temperatures and CO, along with seasonal * Higher probability of extreme weather events (for example,
shifts in precipitation droughts, heat waves, and storms)

Synthesis of climate change impacts on sagebrush plant communities

Data sources Individual plants Plant communities

Field studies 1. Species and functional type responses 3. Plant community responses
* Big sagebrush is resistant to most shifts in * |dentified five potential respontial response types
temperature and precipitation * Intermountain communities may become more
* Drought will have immediate effects on stable under projected shifts

bunchgrasses and high-intensity drought could Low elevation and southern communities at risk
induce sagebrush mortality for invasion and increasing bare ground

2. Species distribution models 4. Region-wide effects

* Big sagebrush models show potential range * Core areas identified by Doherty and others
expansion in north and contraction in the south (2022) are relatively stable.
C, grasses are likely to expand north with * Forage species including C, and C, bunchgrasses
increased temperatures are likely to experience compositional shifts
Little information about forb responses

Key * Relative stability for big sagebrush * |Increased threat of invasion in * Potential migration into higher

plant communities in the the southern part of the range elevations as snowmelt occurs

insights e
g intermountain part of the region earlier in the year

Implications for decisions and land management Additional resources

Forage, wildfire, habitat management, recreation, Adaptation frameworks, visualizations and
and reclamation data products
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Simulation modeling approach — SOILWAT2
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