Fire

As the National Climate Adaptation Science Center (CASC) develops a strategic effort around fire science, there is a critical need to develop a national-scale synthesis effort that identifies key regional CASC activities previously conducted, as well as major science gaps that may be addressed by a coordinated CASC network approach. The North Central CASC postdoctoral fellow will play a leadership role in the National CASC Climate Adaptation Postdoctoral (CAP) Fellows Future of Fire cohort to help identify the common efforts and leveraging points to shape the national-scale synthesis. Currently there is limited North Central CASC supported fire science available for the North Central region. To meet this need, the North Central CASC postdoctoral fellow will develop region-specific fire information relevant to resource managers that are challenged with making decisions to adapt to changing fire risk and ecosystem responses. This project aims to determine the future size and number of fires, total burn area, and rates of change among years and across space in the contiguous United States. The goal is to explain changes in these fire variables in relation to climate change and changing housing density, which drives human ignitions and fire suppression efforts. To predict the future size and number of fires, statiscal models that look at fire-climate relationships will be applied to climate data output from several global climate models under two future climate scenarios. The results will help improve future fire projections based on climate modeling and data at spatial- and temporal-scales relevant for resource managers, with a focus on: i) identifying regions where fire has historically been infrequent or absent; ii) changes to fire extremes and other important aspects of fire behavior that have an impact on fire operations/management (i.e., timing, intensity, seasonal length); and iii) changes that will exceed the capacity of current institutional management approaches. Additionally, the postdoctoral fellow will help coordinate a team of regional partners, scientists and managers to determine what information is most useful for decision-making. This engagement with practitioners will be beneficial in informing the national-scale synthesis and identification of key metrics.

Natural resource managers consistently identify invasive species as one of the biggest challenges for ecological adaptation to climate change. Yet climate change is often not considered during their management decision making. Given the many ways that invasive species and climate change will interact, such as changing fire regimes and facilitating the migration of high priority species, it is more critical than ever to integrate climate adaptation science and natural resource management. The coupling of climate adaptation and invasive species management remains limited by a lack of information, personnel, and funding. Those working on ecological adaptation to climate change have reported that information is not available or is not presented in a way that informs invasive species management. This project will expand the successful model of the Northeast Regional Invasive Species and Climate Change Management Network to the North Central region of the U.S. This effort will integrate the research and management of invasive species, climate change, and fire under one umbrella. Stakeholders in the North Central region have identified invasive species, woody encroachment, wildfire, and habitat and ecological transformation as key management issues which this project will address. A primary activity will be to host two Science Integration Workshops to pair management needs with research directions. From these workshops, strategic scientific products will be derived that include synthesis of existing information in a workshop report, summaries on management challenges adapted for the region, blog posts for managers, and collaboration with land managers to access and utilize existing climate and invasive species information and tools. The research team will work together with managers to understand key management needs surrounding invasive plant species in a changing climate.

Abundant scientific research has characterized the relationships between climate and fire in ecosystems of the United States, and there is substantial evidence that the role of fire in ecosystems is likely to change with a changing climate. However, there is considerable local-to-regional heterogeneity in the observed and projected changes, driven by the historical and current patterns in fuel availability and flammability, the nature and interaction of climate changes and their effects on ecosystems, and the role of humans and natural-resource management practices in affecting those trajectories. In particular, changing fire regimes in pose numerous natural resource management challenges. Decision makers in natural-resource management increasingly require information about potential future changes in fire regimes to effectively prepare for and adapt to climate change impacts. An effective forward-looking fire science synthesis is urgently required to reflect the changing dimensions of human fire management, recognizing that fire causes, effects, impacts, and management are all interrelated components of a social-ecological-hydrological system with the potential for profound ecological transformation. To meet this need, we propose to conduct a synthetic research assessment of changing fire dynamics and to relate these changes to natural resource management. Through this project, we will engage a post-doctoral fellow to lead this research, and will conduct an assessment of: 1) the state of the science on how climate change is currently affecting and projected to transform fire processes; 2) how projected changes fit within the context of national patterns and trends; 3) the implications of these changes for natural resource management and climate change adaptation efforts. Products will include one or more peer reviewed manuscript(s) on the regional findings; one or more peer reviewed manuscripts placing these regional findings in a broader national context; and public facing documents and/or communication activities (e.g., webinars) to engage managers with the results of this work.

Abstract (from IOPScience): Ecological droughts are deficits in soil-water availability that induce threshold-like ecosystem responses, such as causing altered or degraded plant-community conditions, which can be exceedingly difficult to reverse. However, 'ecological drought' can be difficult to define, let alone to quantify, especially at spatial and temporal scales relevant to land managers. This is despite a growing need to integrate drought-related factors into management decisions as climate changes result in precipitation instability in many semi-arid ecosystems. We asked whether success in restoration seedings of the foundational species big sagebrush (Artemisia tridentata) was related to estimated water deficit, using the SoilWat2 model and data from >600 plots located in previously burned areas in the western United States. Water deficit was characterized by: 1) the standardized precipitation-evapotranspiration index (SPEI), a coarse-scale drought index, and 2) the number of days with wet and warm conditions in the near-surface soil, where seeds and seedlings germinate and emerge (i.e. days with 0-5 cm deep soil water potential > -2.5 MPa and temperature above 0 °C). SPEI, a widely used drought index, was not predictive of whether sagebrush had reestablished. In contrast, wet-warm days elicited a critical drought threshold response, with successfully reestablished sites having experienced 7 more wet-warm days than unsuccessful sites during the first March following summer wildfire and restoration. Thus, seemingly small-scale and short-term changes in water availability and temperature can contribute to major ecosystem shifts, as many of these sites remained shrubless two decades later. These findings help clarify the definition of ecological drought for a foundational species and its imperiled semi-arid ecosystem. Drought is well known to affect the occurrence of wildfires, but drought in the year(s) after fire can determine whether fire causes long-lasting, negative impacts on ecosystems.

Sagebrush steppe is one of the most widely distributed ecosystems in North America. Found in eleven western states, this important yet fragile ecosystem is dominated by sagebrush, but also contains a diversity of native shrubs, grasses, and flowering plants. It provides critical habitat for wildlife like pronghorn and threatened species such as the greater sage-grouse, and is grazed by livestock on public and private lands. However, this landscape is increasingly threatened by shifts in wildfire patterns, the spread of invasive grasses, and changing climate conditions. While sagebrush is slow to recover after fires, non-native grasses such as cheatgrass thrive in post-fire conditions and the spread of these species can increase the frequency and intensity of wildfires. These changes to the sagebrush ecosystems have implications for big game, threatened wildlife, and ranching. To address this growing concern, resource managers will often try to limit the spread of exotic grasses after fire events by applying herbicides, or will help native species recover through seeding or planting. However, these treatments have mixed results, and poor success is often attributed to droughts, which make it more difficult for seeds and native plants to survive; to the limited amount of time in which these treatments can be applied (usually in the first year after a fire); or because the seeds or plants used aren’t adapted to the environmental conditions of the location where they’re applied. The goal of this project is to improve our understanding of the factors that affect post-fire treatment success. Researchers will use data collected from more than 300 fires over the last 40 years, after which treatments were applied. They will identify the impacts of drought on those treatments, how incorporating information on drought forecasts or extending the period over which treatments are applied could have altered the outcomes, and how managers can better select plant material that will be more adaptable to the conditions of planting locations. Addressing this knowledge gap has been identified as a high priority in the DOI Integrated Rangeland Fire Management Strategy, by the BLM Emergency Stabilization and Rehabilitation Program, and by state management agencies in the West. The results of this project will support adaptive management of sagebrush ecosystems, which will be critical if these ecologically and economically important landscapes are to be maintained into the future. This project was jointly funded by the Southwest, Northwest, and North Central CASCs.

Big sagebrush plant communities are important and widespread in western North America and are crucial for meeting long-term conservation goals for greater sage-grouse and other wildlife of conservation concern. Yet wildfire is increasing in the West, turning biodiverse, shrub-based ecosystems dominated by sagebrush into grasslands containing invasive species such as cheatgrass and less overall plant and animal diversity. These transformations negatively impact people and ecosystems by reducing habitat quality for wildlife and the aesthetic value of the landscape.   Understanding how sagebrush communities are already responding and will continue to respond to changes in wildfire, invasive species, and climate is a priority for managers in the West. However, we currently know very little about how invasive grasses and fire will affect big sagebrush rangelands in the future and whether all big sagebrush ecosystems in the western U.S. will be negatively affected. In collaboration with the U.S. Fish and Wildlife Service, this project aims to fill this gap by assessing the vulnerability of sagebrush plant communities to future changes in climate, wildfire, and invasive grasses. To do this, researchers will predict sagebrush plant community responses to climate variability, wildfire-driven increases in invasive grasses,and grazing pressure at 200 sites across the West that are particularly important for the greater sage-grouse. They will then produce maps of what future sagebrush plant communities could look like by mid- and late-century for local and regional land and wildlife managers. Additionally, a web interface will be made available for managers to view this information, allowing them to access the data.   This work will provide resource and land managers with maps of what future plant communities will look like and will focus on aspects of the plant community that are most relevant for range-wide management priorities. A better understanding of the effects that climate, wildfire, and invasive grasses could have on sagebrush habitats will help managers more efficiently target their conservation efforts on areas that are projected to be the least vulnerable to these threats.

Forests in the western U.S. are increasingly impacted by climate change. Warmer and drier conditions both increase fire activity in western forests and make it more difficult for forests to recover after wildfires. If forests fail to recover, they may shift to non-forest ecosystems like grasslands or shrublands. It is important to understand where fires may result in the loss of forests because forests provide a variety of ecosystem services that human communities rely on, including carbon storage, water regulation and supply, and biodiversity. Western forests are also integral for the timber industry and valued for their recreation opportunities. Anticipating future changes to forest ecosystems, particularly at local scales relevant to land and resource managers, requires an understanding of the vulnerability of forests to fire-catalyzed change. The main goal of this work is to create a vulnerability assessment that highlights geographic areas and forest types most vulnerable to fire-catalyzed ecosystem change under current and future climate change scenarios. Researchers will assess the different parts of forest vulnerability, including exposure to varying elements of climate change (e.g. temperature and moisture balance), exposure to varying types of fires (e.g. high vs. low severity fire), and sensitivity of post-fire seedlings to climate-related mortality (e.g. through water stress).  Previous research findings on this topic, funded by the Joint Fire Science Program, the National Science Foundation, and NASA, are directly relevant to land managers, but require “translation” into practical and usable tools and resources. This project will rely on and strengthen communications and collaborations between researchers and federal land managers from the U.S. Forest Service and U.S. Department of the Interior bureaus through face-to-face interactions to ensure that managers have access to the science in a form that is useful. The proposed vulnerability assessment will help managers anticipate when and where wildfires will impact ecosystems in new ways, potentially causing ecosystem shifts from forested to non-forested areas, or to fundamentally different forest types.

Climate change is causing an increase in the amount of forested area burned by wildfires in the western U.S. The warm, dry post-fire conditions of the region may limit tree regeneration in some areas, potentially causing a shift to non-forest vegetation. Managers are increasingly challenged by the combined impacts of greater wildfire activity, the significant uncertainty about whether forests will recover, and limited resources for reforestation efforts. Simultaneously, there has been an increased focus on post-fire reforestation efforts as tree planting has become a popular climate change mitigation strategy across the nation. Therefore, with increased interest and need, it is crucial to identify where varying approaches to support post-fire tree regeneration are most likely to be successful.   This project seeks to help managers target and prioritize various post-fire management approaches and identify the areas where these actions will promote recovery and adaptation or will be less successful due to changing climate conditions. Researchers will quantify how post-fire climate conditions affect both natural and assisted tree regeneration. Then, this information will be used to make a freely available web tool that will predict the probability of post-fire regeneration in recently affected areas for three dominant conifer species: ponderosa pine, Douglas-fir, and western larch. This tool will be applied in collaboration with managers from the Bureau of Land Management and The Nature Conservancy to help prioritize planting efforts on a recent wildfire in Montana. This planting effort will provide an opportunity to test if planting seedlings from warmer and drier areas may allow for adaptation to the warming climate conditions. Combined, the work will help managers to effectively use limited resources by prioritizing where and how to plant seedlings and promote forest regeneration after wildfires. 

Pinyon-juniper woodlands are important ecosystems in the western U.S. that provide numerous critical environmental, economic, and cultural benefits. For example, pinyon pines are a significant cultural resource for multiple Native American Tribes and provide necessary habitat for plants and wildlife (including at risk species, such as the pinyon-jay). Despite their importance, stress put on pinyon-juniper woodlands by wildfires and other interacting effects of climate change are causing major population declines of these woodland trees. Such changes to pinyon-juniper woodlands lead to uncertainty for land managers on best practices for protecting these ecosystems from stand replacing fire (where most or all of the trees are killed), and restoring pinyon-juniper communities when fire does occur. To address these uncertainties, researchers are collaborating with a diverse set of land managers, scientists and tribal partners to answer two questions: (1) How does a holistic understanding of the ways tree thinning and fire affect pinyon-juniper woodlands lead to improved management options? and (2) What innovative restoration techniques can restore pinyon-juniper communities following fire in the face of climate change? The research team will use long-term observational data and sites managed by federal and tribal partners to explore ecosystem health and regeneration patterns over pinyon-juniper woodlands that have experienced thinning or fire. This will include assessments of rare and threatened plant species. The researchers will also test a suite of novel restoration options following past fires to provide tools for pinyon-juniper restoration success in places where natural post-fire regrowth is not occurring. Taken together, this inclusive research project will address some of the most pressing resource management information needs in order to develop strategies to sustain pinyon-juniper woodlands and the many services they provide.

Forested areas in the Western U.S. that are impacted by disturbances such as fire and drought have increased in recent decades. This trend is likely to continue, with the increase in frequency and extent of wildfire activity being especially concerning. Resource managers need reliable scientific information to better understand wildfire occurrence, which can vary substantially across landscapes and throughout time. However, few scientific models capture this variability, and projections of future potential changes in fire occurrence can include some uncertainty. This uncertainty can limit our ability to anticipate potential wildfire impacts on society and ecological systems. Another method to help managers prepare for the future is to examine post-fire conditions and asses how and if forests might transition to different landscape types after wildfires (e.g. a change from conifer to deciduous forest). Some studies show that post-fire tree regeneration has been limited in many of the areas burned, especially in large high-severity patches, changing the composition of the landcover. However, it is also unclear how common this post-fire state transition is and what thresholds (e.g., fire severity, burn patch size, post-fire weather conditions) predict such transitions. This research will investigate the impacts that fire disturbances and drought have on the structure and composition of forest ecosystems across the Western U.S. There will be three main areas of focus: 1) simulating interactions among climate, drought, vegetation, and disturbances, like fire; 2) monitoring and predicting post-fire forest vegetation recovery using remote sensing and simulation models, and 3) modeling wildfire occurrence and risk using historical data. This project builds off work previously done under the former USGS LandCarbon program.   Products from this project will be used to assess past patterns of wildfire risk to homes and project future potential changes in fire occurrence and risk across the conterminous U.S. Outputs from this project will also inform fire management decision-making and can also be used to advance existing predictive technology, including landscape simulation models such as LANDIS-II, to help resource manager better prepare for future conditions.