This dataset represents a climate-informed management alternative for maintaining whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem. This data was developed for use in a landscape simulation modeling study aimed at evaluating how well alternative management strategies maintain whitebark pine populations under historical climate and future climate conditions. For the study, we developed three spatial management alternatives for whitebark pine in the Greater Yellowstone Ecosystem representing no active management, current management, and climate-informed management. These management alternatives were implemented in the simulaton model FireBGCv2 under historical climate and three future climate change scenarios - the HadGEM-ES, CESM1-CAM5, and CNRM-CM5 Global Circulation Models under the RCP 8.5 emissions scenario. We worked with the Greater Yellowstone Coordinating Committee's (GYCC) Whitebark Pine Subcommittee to develop this spatial representation of their current management strategy. The treatments mapped represent a set of the treatments recommended in the GYCC Whitebark Pine 2011 Strategy document and include planting blister-rust resistant whitebark pine seedlings, competition removal thinning, wildland fire use and prescribed fire, and protection from mountain pine beetles using verbenone and carbaryl. We used historical and future projections of climate suitability based on species distribution models for whitebark pine (Chang et al. 2014) to map zones of core, deteriorating, and future whitebark pine habitat. Core zones were those areas that are currently suitable for whitebark and remain suitable in the future. Deteriorating zones were where the climatic conditions for whitebark pine are expected to decline. Future zones were areas that are projected to become newly suitable for whitebark pine. We then overlaid our climate zones for whitebark pine with similar projections of future climate suitability for all of whitebark pine’s competitors - Engelmann spruce, subalpine fir, lodgepole pine, and Douglas-fir (Piekielek et al. 2015. We discussed the different combinations of climate suitability zones (core, deteriorating, future) and potential future level of competition (low or high) from other species with the GYCC Whitebark Pine Subcommittee to determine which management activities should be prioritized within each management zone. The result is a map of management zones where different activities are prioritized to meet the goal of maintaining whitebark pine populations. This was used to determine which treatments would be implemented spatially during the simulation modeling, dependent upon additional criteria related to simulated stand-level conditions.
Plants
This dataset represents current management alternatives for maintaining whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem. This data was developed for use in a landscape simulation modeling study aimed at evaluating how well alternative management strategies maintain whitebark pine populations under historical climate and future climate conditions. For the study, we developed three spatial management alternatives for whitebark pine in the Greater Yellowstone Ecosystem representing no active management, current management, and climate-informed management. These management alternatives were implemented in the simulaton model FireBGCv2 under historical climate and three future climate change scenarios - the HadGEM-ES, CESM1-CAM5, and CNRM-CM5 Global Circulation Models under the RCP 8.5 emissions scenario. We worked with the Greater Yellowstone Coordinating Committee's (GYCC) Whitebark Pine Subcommittee to develop this spatial representation of their current management strategy. The treatments mapped represent a set of the treatments recommended in the GYCC Whitebark Pine 2011 Strategy document and include planting blister-rust resistant whitebark pine seedlings, competition removal thinning, wildland fire use and prescribed fire, and protection from mountain pine beetles using verbenone and carbaryl. For the current management strategy, we relied on differences in land allocation classes and proximity to roads and trails to determine where treatments would occur. Land allocations were derived from a federal land ownership layer (https://catalog.data.gov/harvest/object/6bec8d3c-fff4-4037-8028-9b1d7ff64814/html/original). We mapped the proximity to roads/trails by buffering all roads/trails as mapped by the GYCC Whitebark Pine Subcommittee.The types of treatments that can be implemented in the current strategy are constrained by access, logistics, and management constraints among different jurisdictions. Through discussions with the GYCC Whitebark pine Subcommittee we mapped available treatments based on land allocation and proximity to roads in the following zones: Zone 1: Multiple use forest (non-Wilderness & inventoried roadless areas on USFS/BLM lands) farther than 1-mile from roads/trails. Available treatments: thinning, prescribed fire, wildland use fire, 80% fire suppression. Zone 2: Multiple use forest (non-Wilderness & inventoried roadless areas on USFS/BLM lands) within 1-mile from roads/trails. Available treatments: planting, thinning, prescribed fire, wildland use fire, 80% fire suppression. Zone 3: NPS non-wilderness lands farther than 1 mile from roads/trails. Available treatments: thinning, prescribed fire, wildland use fire, 20% fire suppression. Zone 4: NPS, non-wilderness lands within 1 mile from roads/trails. Available treatments: planting, thinning, prescribed fire, wildland use fire, 20% fire suppression. Zone 5: Non-federal lands (private, state, Native American lands, but we do include USFWS lands here). Available treatments: none, full fire suppression. Zone 6: Wilderness lands (designated, proposed and wilderness study areas) administered by NPS. Available treatments: wildland fire use, 20% fire suppression Zone 7: Wilderness lands (designated, proposed and wilderness study areas) administered by USFS/BLM. Available treatments: wildland fire use, 20% fire suppression
Natural resource managers consistently identify invasive species as one of the biggest challenges for ecological adaptation to climate change. Yet climate change is often not considered during their management decision making. Given the many ways that invasive species and climate change will interact, such as changing fire regimes and facilitating the migration of high priority species, it is more critical than ever to integrate climate adaptation science and natural resource management. The coupling of climate adaptation and invasive species management remains limited by a lack of information, personnel, and funding. Those working on ecological adaptation to climate change have reported that information is not available or is not presented in a way that informs invasive species management. This project will expand the successful model of the Northeast Regional Invasive Species and Climate Change Management Network to the North Central region of the U.S. This effort will integrate the research and management of invasive species, climate change, and fire under one umbrella. Stakeholders in the North Central region have identified invasive species, woody encroachment, wildfire, and habitat and ecological transformation as key management issues which this project will address. A primary activity will be to host two Science Integration Workshops to pair management needs with research directions. From these workshops, strategic scientific products will be derived that include synthesis of existing information in a workshop report, summaries on management challenges adapted for the region, blog posts for managers, and collaboration with land managers to access and utilize existing climate and invasive species information and tools. The research team will work together with managers to understand key management needs surrounding invasive plant species in a changing climate.
Tribal resource managers in the southwest U.S. are facing a host of challenges related to environmental change, including increasing temperatures, longer periods of drought, and invasive species. These threats are exacerbating the existing challenges of managing complex ecosystems. In a rapidly changing environment, resource managers need powerful tools and the most complete information to make the most effective decisions possible. Traditional Ecological Knowledge has enabled Indigenous peoples to adaptively manage and thrive in diverse environments for thousands of years, yet it is generally underutilized and undervalued, particularly in the context of western scientific approaches. Traditional Ecological Knowledge and western science offer complementary insights and, together, can facilitate climate change adaptation. This project will use both methods of understanding the environment to provide tribal resource managers cutting edge information about what their environment looked like in the past to better understand it in the present and make more informed decisions for the future. In particular, this project will work directly with Ute Mountain Ute decision-makers in using a combination of Traditional Ecological Knowledge and paleo-ecological records to explore past vegetation changes relevant to the stakeholder community. This work will then inform a forward-looking assessment of climate change impacts and adaptation options. Tribal youth will be involved in collecting information, and in developing and distributing outreach materials that summarize the work. By utilizing both Traditional Ecological Knowledge and western science techniques, this project will: 1) show how two different methods of understanding the environment can be utilized in a resource management context to assist with decision making, 2) establish how useful these methods are in tandem, and 3) provide southwest resource managers with better historic and holistic information to use in resource management decision making.
Abstract (from IOPScience): Ecological droughts are deficits in soil-water availability that induce threshold-like ecosystem responses, such as causing altered or degraded plant-community conditions, which can be exceedingly difficult to reverse. However, 'ecological drought' can be difficult to define, let alone to quantify, especially at spatial and temporal scales relevant to land managers. This is despite a growing need to integrate drought-related factors into management decisions as climate changes result in precipitation instability in many semi-arid ecosystems. We asked whether success in restoration seedings of the foundational species big sagebrush (Artemisia tridentata) was related to estimated water deficit, using the SoilWat2 model and data from >600 plots located in previously burned areas in the western United States. Water deficit was characterized by: 1) the standardized precipitation-evapotranspiration index (SPEI), a coarse-scale drought index, and 2) the number of days with wet and warm conditions in the near-surface soil, where seeds and seedlings germinate and emerge (i.e. days with 0-5 cm deep soil water potential > -2.5 MPa and temperature above 0 °C). SPEI, a widely used drought index, was not predictive of whether sagebrush had reestablished. In contrast, wet-warm days elicited a critical drought threshold response, with successfully reestablished sites having experienced 7 more wet-warm days than unsuccessful sites during the first March following summer wildfire and restoration. Thus, seemingly small-scale and short-term changes in water availability and temperature can contribute to major ecosystem shifts, as many of these sites remained shrubless two decades later. These findings help clarify the definition of ecological drought for a foundational species and its imperiled semi-arid ecosystem. Drought is well known to affect the occurrence of wildfires, but drought in the year(s) after fire can determine whether fire causes long-lasting, negative impacts on ecosystems.
Throughout western North America, warming associated with climate change is leading to both earlier spring peak streamflows and earlier seed dispersal, potentially reducing seedling establishment and in turn reducing the quality of riparian (near-river) forests, which provide critical habitat for diverse birds, mammals, reptiles, amphibians, and insects, and food and shade for fish and other aquatic animals. This project aimed to predict these effects of climate change on cottonwood and willow tree regeneration in western forests by linking models of seed dispersal timing, streamflow hydrology, and seedling establishment, focusing on the upper South Platte River Basin as a study area. Results are expected to help land managers anticipate future changes in riparian wildlife habitat quality, and potentially to respond to these changes by actively re-vegetating high-priority areas, or by working with water management agencies to schedule dam releases that favor cottonwood and willow establishment.
Determining which species, habitats, or ecosystems are most vulnerable to climate change enables resource managers to better set priorities for conservation action. To address the need for information on vulnerability, this research project aimed to leverage the expertise of university partners to inform the North Central Climate Science Center on how to best assess the vulnerability of elements of biodiversity to climate and land use change in order to inform the development and implementation of management options. Outcomes from this activity were expected to include 1) a framework for modeling vegetation type and species response to climate and land use change, 2) an evaluation of existing alternative vegetation and species response models, and 3) a presentation of vulnerability assessments for managers for incorporation into climate adaptation strategies.
The goal of this project was to inform implementation of the Greater Yellowstone Coordinating Committee (GYCC) Whitebark Pine (WBP) subcommittee’s “WBP Strategy” based on climate science and ecological forecasting. Project objectives were to: 1. Forecast ecosystem processes and WBP habitat suitability across the Greater Yellowstone Area (GYA) under alternative IPCC future scenarios; 2. Improve understanding of possible response to future climate by analyzing WBP/climate relationships in past millennia; 3. Develop WBP management alternatives; 4. Evaluate the alternatives under IPCC future scenarios in terms of WBP goals, ecosystem services, and costs of implementation; and 5. Draw recommendations for implementation of the GYCC WBP strategy that consider uncertainty. Recommendations were derived in a scenario planning workshop based on both the results and uncertainty in the results. These recommendations are expected to thus be immediately acted upon by the GYA management community and the approach and methods are readily applicable to the several other tree species that are undergoing die-offs under changing climate.
Abstract (from http://www.esajournals.org/doi/abs/10.1890/13-0905.1): Many protected areas may not be adequately safeguarding biodiversity from human activities on surrounding lands and global change. The magnitude of such change agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus, there is a need to assess vulnerability across networks of protected areas to determine those most at risk and to lay the basis for developing effective adaptation strategies. We conducted an assessment of exposure of U.S. National Parks to climate and land use change and consequences for vegetation communities. We first defined park protected-area centered ecosystems (PACEs) based on ecological principles. We then drew on existing land use, invasive species, climate, and biome data sets and models to quantify exposure of PACEs from 1900 through 2100. Most PACEs experienced substantial change over the 20th century (>740% average increase in housing density since 1940, 13% of vascular plants are presently nonnative, temperature increase of 1°C/100 yr since 1895 in 80% of PACEs), and projections suggest that many of these trends will continue at similar or increasingly greater rates (255% increase in housing density by 2100, temperature increase of 2.5° - 4.5°C/100 yr, 30% of PACE areas may lose their current biomes by 2030). In the coming century, housing densities are projected to increase in PACEs at about 82% of the rate of since 1940. The rate of climate warming in the coming century is projected to be 2.5 - 5.8 times higher than that measured in the past century. Underlying these averages, exposure of individual park PACEs to change agents differ in important ways. For example, parks such as Great Smoky Mountains exhibit high land use and low climate exposure, others such as Great Sand Dunes exhibit low land use and high climate exposure, and a few such as Point Reyes exhibit high exposure on both axes. The cumulative and synergistic effects of such changes in land use, invasives, and climate are expected to dramatically impact ecosystem function and biodiversity in national parks. These results are foundational to developing effective adaptation strategies and suggest policies to better safeguard parks under broad-scale environmental change.
Abstract (from http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0070454): Managers of protected natural areas increasingly are confronted with novel ecological conditions and conflicting objectives to preserve the past while fostering resilience for an uncertain future. This dilemma may be pronounced at range peripheries where rates of change are accelerated and ongoing invasions often are perceived as threats to local ecosystems. We provide an example from City of Rocks National Reserve (CIRO) in southern Idaho, positioned at the northern range periphery of pinyon-juniper (P-J) woodland. Reserve managers are concerned about P-J woodland encroachment into adjacent sagebrush steppe, but the rates and biophysical variability of encroachment are not well documented and management options are not well understood. We quantified the rate and extent of woodland change between 1950 and 2009 based on a random sample of aerial photo interpretation plots distributed across biophysical gradients. Our study revealed that woodland cover remained at approximately 20% of the study area over the 59-year period. In the absence of disturbance, P-J woodlands exhibited the highest rate of increase among vegetation types at 0.37% yr - 1. Overall, late-successional P-J stands increased in area by over 100% through the process of densification (infilling). However, wildfires during the period resulted in a net decrease of woody evergreen vegetation, particularly among early and mid-successional P-J stands. Elevated wildfire risk associated with expanding novel annual grasslands and drought is likely to continue to be a fundamental driver of change in CIRO woodlands. Because P-J woodlands contribute to regional biodiversity and may contract at trailing edges with global warming, CIRO may become important to P-J woodland conservation in the future. Our study provides a widely applicable toolset for assessing woodland ecotone dynamics that can help managers reconcile the competing demands to maintain historical fidelity and contribute meaningfully to the U.S. protected area network in a future with novel, no-analog ecosystems.