Other Landscapes

Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.

Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.

Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.

Rates of climate and land use change vary across the Great Plains and Rocky Mountains as do the responses of ecosystems to these changes. Knowledge of locations of rapid land use and climate change and changes in ecosystem services such as water runoff and ecological productivity are important for vulnerability assessment and crafting locally relevant adaptation strategies to cope with these changes. This project assessed the loss of public, private, and tribal lands due to ongoing land use intensifications and fragmentation extents across the NC CSC domain. In addition, the project evaluated how the climate, ecosystem processes, and vegetation have shifted over the past half century and how they are projected to change in the coming century under various future scenarios. These analyses were carried out in GWEs and EPA III level ecoregions centered at public, tribal, and private lands. These areas of natural vegetation provide ecosystem services important to local people and knowledge of patterns of climate and ecological change are important to resource managers. The results of the project can be used by the NC CSC Adaptation team to work with local stakeholders to develop strategies for coping with and adapting to the ongoing land use change and projected changes in climate.

Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI.  Both types of MI was estimated as a ratio of Precipitation and Evapotranspiration. The MACA data includes Penman PET which was estimated using Penman-Monteith methods. However, Thornthwaite PET was estimated using Thornthwaite methods for this project. 

Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI.  Both types of MI was estimated as a ratio of Precipitation and Evapotranspiration. The MACA data includes Penman PET which was estimated using Penman-Monteith methods. However, Thornthwaite PET was estimated using Thornthwaite methods for this project. For further details please see summary sheet below. 

Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI.  Both types of MI was estimated as a ratio of Precipitation and Evapotranspiration. The MACA data includes Penman PET which was estimated using Penman-Monteith methods. However, Thornthwaite PET was estimated using Thornthwaite methods for this project. 

Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI.  Both types of MI was estimated as a ratio of Precipitation and Evapotranspiration. The MACA data includes Penman PET which was estimated using Penman-Monteith methods. However, Thornthwaite PET was estimated using Thornthwaite methods for this project. 

Fossil fuel and agriculture have increased atmospheric concentrations of the greenhouse gases carbon dioxide and methane, which have caused global air temperature to increase by almost 1- degree Celsius. In the absence of climate mitigation, over the next century human-driven climate change is expected to increase temperatures from pre-industrial levels by more than 2-degrees. Understanding the consequences of climate change on ecosystems and the services they provide are critical for guiding land management activities that aim to improve resiliency and to prevent species losses. Here we evaluated how sagebrush ecosystems in the Western United States respond to climate change by using multiple climate projections and ecosystem modeling approaches to assess uncertainty and to identify future areas of field and experimental research. We find that in the absence of changes in fire, invasive species, and habitat loss, that sagebrush is tolerant of both low moisture levels and high air temperatures, and that climate change will impact the southern extent of its range most significantly. Process-based models, which consider the effects of carbon dioxide on leaf photosynthesis and water exchange show potential increases in the growth of sagebrush into the 21st century. Compared to field observations, there is a need to further constrain how sagebrush allocates carbon to roots, stems and foliage, and how these processes respond to water limitation. Agreement between modeling approaches that sagebrush is tolerant to higher air temperatures suggests that land managers should consider enhancing resilience of these systems through fire and invasive species management strategies.