As part of a broader effort to increase the ability of federal agencies to understand and adapt to changes in climate variability and hazard profiles, the Colorado Bureau of Land Management has commissioned an on-going research effort to gather and analyze information on the potential climate-related vulnerabilities of the numerous communities and businesses that rely upon the state’s 8.4 million acres of BLM-managed public lands. In addition to a comprensive final report (Colorado Bureau of Land Management: Social Climate Vulnerability Assessment), the project team has produced three short, easy to read "Fact Sheets" aimed at providing a concise view of each of the project's components and their major findings.
Science Tools for Managers
As part of a broader effort to increase the ability of federal agencies to understand and adapt to changes in climate variability and hazard profiles, the Colorado Bureau of Land Management has commissioned an on-going research effort to gather and analyze information on the potential climate-related vulnerabilities of the numerous communities and businesses that rely upon the state’s 8.4 million acres of BLM-managed public lands. This report contains the initial findings of this project, and details work conducted between 2015 and 2017 centered around three main questions: 1. What efforts are currently underway within the Colorado BLM to address changes in climate and the climate vulnerabilities of public land users? 2. What are the characteristics of connections between public lands and communities across the state? 3. How are land-based livelihoods (such as ranching and recreational outfitting) that rely upon public land resources affected by changes in long-term weather patterns, extreme events, and associated BLM decision-making? To answer these questions, we took a mixed-methods approach. To better understand existing work on climate change within the Colorado BLM, we extensively reviewed existing resource management plans, resource advisory council notes, and other policy documents. In order to establish a state-wide view of patterns of communities, their characteristics, and their connection to BLM-managed resources, we conducted a geospatial analysis of multiple publicly available socio-demographic and economic datasets, as well as numerous BLM field office records on usage patterns and intensity. Finally, we also conducted two in-depth, qualitative case studies in two field office management areas with well-known connections to public land resources. Here, we used interviews with BLM staff, grazing permittees, recreational outfitters, and other business operators with ties to BLM-managed lands to better understand how climate hazards and shifts in seasonal weather patterns play out on the ground for public land users and the numerous communities across the state whose economies are closely linked to public land management policy. Throughout this process, we have aimed to compile and synthesize information that will allow field office managers and staff to ensure that future policies and management actions reflect the strengths, vulnerabilities, and needs of the diverse communities that rely upon public lands across the state.
Since 2014, the High Plains Regional Climate Center, along with several partners, has worked with the Eastern Shoshone and Northern Arapaho tribes of the Wind River Indian Reservation in western Wyoming. The reservation is located in an arid, mountainous region that is prone to water resource issues. Through input from numerous workshops, webinars, and calls with tribal representatives, the HPRCC created a series of quarterly climate summaries to help the tribes make better informed on-reservation water management decisions. This Decision Dashboard is complementary to the summaries, allowing for more real-time monitoring of climate and drought conditions. This work was funded by the North Central CSC, through the project "The Wind River Indian Reservation’s Vulnerability to the Impacts of Drought and the Development of Decision Tools to Support Drought Preparedness".
The Colorado office of the Bureau of Land Management (BLM), which administers 8.4 million acres of Colorado’s surface acres, and more than 29 million acres of sub‐surface mineral estate, has been charged with developing a climate adaptation strategy for BLM lands within the state. The assessments presented herein present a statewide perspective on the potential future influences of a changing climate on species and ecosystems of particular importance to the BLM, with the goal of facilitating development of the best possible climate adaptation strategies to meet future conditions. The Colorado Natural Heritage Program conducted climate change vulnerability assessments of plant and animal species, and terrestrial and freshwater ecosystems (“targets”) within a time frame of mid‐21st century. Our assessments 1) evaluate the potential impact of future climate conditions on both species and ecosystems by identifying the degree of change expected between current and future climate conditions within the Colorado range of the target, and 2) address the potential impact of non‐climate factors that can affect the resilience of the target to climate change, or which are likely to have a greater impact due to climate change. Climate change vulnerability assessments are not an end unto themselves, but are intended to help BLM managers identify areas where action may mitigate the effects of climate change, recognize potential novel conditions that may require additional analysis, and characterize uncertainties inherent in the process.
We worked with managers in two focal areas to plan for the uncertain future by integrating quantitative climate change scenarios and simulation modeling into scenario planning exercises. In our central North Dakota focal area, centered on Knife River Indian Villages National Historic Site, managers are concerned about how changes in flood severity and growing conditions for native and invasive plants may affect archaeological resources and cultural landscapes associated with the Knife and Missouri Rivers. Climate projections and hydrological modeling based on those projections indicate plausible changes in spring and summer soil moisture ranging from a 7 percent decrease to a 13 percent increase and maximum winter snowpack (important for spring flooding) changes ranging from a 13 percent decrease to a 47 percent increase. Facilitated discussions among managers and scientists exploring the implications of these different climate scenarios for resource management revealed potential conflicts between protecting archeological sites and fostering riparian cottonwood forests. The discussions also indicated the need to prioritize archeological sites for excavation or protection and culturally important plant species for intensive management attention. In our southwestern South Dakota focal area, centered on Badlands National Park, managers are concerned about how changing climate will affect vegetation production, wildlife populations, and erosion of fossils, archeological artifacts, and roads. Climate scenarios explored by managers and scientists in this focal area ranged from a 13 percent decrease to a 33 percent increase in spring precipitation, which is critical to plant growth in the northern Great Plains region, and a slight decrease to a near doubling of intense rain events. Facilitated discussions in this focal area concluded that greater effort should be put into preparing for emergency protection, excavation, and preservation of exposed fossils or artifacts and revealed substantial opportunities for different agencies to learn from each other and cooperate on common management goals. Follow up quantitative simulation modeling of grassland dynamics helped quantify the degree of change expected in vegetation production under the wide range of climate scenarios and suggested that (a) low grazing rates could be adversely affecting vegetation composition in the national park and (b) understanding of the management practices needed to maintain desired vegetation conditions is incomplete.
The Evaporative Demand Drought Index (EDDI) is an experimental drought monitoring and early warning guidance tool. It examines how anomalous the atmospheric evaporative demand (E0; also known as "the thirst of the atmosphere") is for a given location and across a time period of interest. EDDI is multi-scalar, meaning that this period—or "timescale"—can vary to capture drying dynamics that themselves operate at different timescales; we generate EDDI at 1-week through 12-month timescales. This webpage offers a frequently updated assessment of current conditions across CONUS, southern parts of Canada, and northern parts of Mexico; a tool to generate historical time series of EDDI for a user-selected region; introductions to the EDDI team; and a list of resources for users to explore EDDI and its applications further.
This dataset represents the area in the Greater Yellowstone Ecosystem prioritized for different whitebark pine(Pinus albicaulis) management activities, summarized by climate suitability zones. This data was developed for use in a landscape simulation modeling study aimed at evaluating how well alternative management strategies maintain whitebark pine populations under historical climate and future climate conditions. For the study, we developed three spatial management alternatives for whitebark pine in the Greater Yellowstone Ecosystem representing no active management, current management, and climate-informed management. These management alternatives were implemented in the simulaton model FireBGCv2 under historical climate and three future climate change scenarios - the HadGEM-ES, CESM1-CAM5, and CNRM-CM5 Global Circulation Models under the RCP 8.5 emissions scenario. We worked with the Greater Yellowstone Coordinating Committee's (GYCC) Whitebark Pine Subcommittee to develop this spatial representation of their current management strategy. The treatments mapped represent a set of the treatments recommended in the GYCC Whitebark Pine 2011 Strategy document and include planting blister-rust resistant whitebark pine seedlings, competition removal thinning, wildland fire use and prescribed fire, and protection from mountain pine beetles using verbenone and carbaryl. We used historical and future projections of climate suitability based on species distribution models for whitebark pine (Chang et al. 2014) to map zones of core, deteriorating, and future whitebark pine habitat. Core zones were those areas that are currently suitable for whitebark and remain suitable in the future. Deteriorating zones were where the climatic conditions for whitebark pine are expected to decline. Future zones were areas that are projected to become newly suitable for whitebark pine. We then overlaid our climate zones for whitebark pine with similar projections of future climate suitability for all of whitebark pine’s competitors - Engelmann spruce, subalpine fir, lodgepole pine, and Douglas-fir (Piekielek et al. 2015. We discussed the different combinations of climate suitability zones (core, deteriorating, future) and potential future level of competition (low or high) from other species with the GYCC Whitebark Pine Subcommittee to determine which management activities should be prioritized within each management zone. The result is a map of management zones where different activities are prioritized to meet the goal of maintaining whitebark pine populations. This was used to determine which treatments would be implemented spatially during the simulation modeling, dependent upon additional criteria related to simulated stand-level conditions. In this dataset, we used the resulting map of spatially prioritized management activities to summarize the area prioritized for each management activity that fell within Core, Deteriorating, and Future climate suitability zones
This dataset represents the area in the Greater Yellowstone Ecosystem prioritized for different whitebark pine(Pinus albicaulis) management activities, summarized by land classes. This data was developed for use in a landscape simulation modeling study aimed at evaluating how well alternative management strategies maintain whitebark pine populations under historical climate and future climate conditions. For the study, we developed three spatial management alternatives for whitebark pine in the Greater Yellowstone Ecosystem representing no active management, current management, and climate-informed management. These management alternatives were implemented in the simulaton model FireBGCv2 under historical climate and three future climate change scenarios - the HadGEM-ES, CESM1-CAM5, and CNRM-CM5 Global Circulation Models under the RCP 8.5 emissions scenario. We worked with the Greater Yellowstone Coordinating Committee's (GYCC) Whitebark Pine Subcommittee to develop this spatial representation of their current management strategy. The treatments mapped represent a set of the treatments recommended in the GYCC Whitebark Pine 2011 Strategy document and include planting blister-rust resistant whitebark pine seedlings, competition removal thinning, wildland fire use and prescribed fire, and protection from mountain pine beetles using verbenone and carbaryl. We used historical and future projections of climate suitability based on species distribution models for whitebark pine (Chang et al. 2014) to map zones of core, deteriorating, and future whitebark pine habitat. Core zones were those areas that are currently suitable for whitebark and remain suitable in the future. Deteriorating zones were where the climatic conditions for whitebark pine are expected to decline. Future zones were areas that are projected to become newly suitable for whitebark pine. We then overlaid our climate zones for whitebark pine with similar projections of future climate suitability for all of whitebark pine’s competitors - Engelmann spruce, subalpine fir, lodgepole pine, and Douglas-fir (Piekielek et al. 2015. We discussed the different combinations of climate suitability zones (core, deteriorating, future) and potential future level of competition (low or high) from other species with the GYCC Whitebark Pine Subcommittee to determine which management activities should be prioritized within each management zone. The result is a map of management zones where different activities are prioritized to meet the goal of maintaining whitebark pine populations. This was used to determine which treatments would be implemented spatially during the simulation modeling, dependent upon additional criteria related to simulated stand-level conditions. In this dataset, we used the resulting map of spatially prioritized management activities to summarize the area prioritized for each management activity that fell within different land classifications (mutliple use forests, National Park Service lands, Wilderness lands, and non-federal lands).
Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We worked with a team of biologists and managers to identify management actions aimed at mitigating climate impacts to WBP. Identified actions were spatially allocated across the GYE under two management strategies: (1) current management and (2) climate-informed management which used projected climate suitability for WBP and competing tree species to place management actions. The current management strategy reflected current legal, policy and access contraints, such as restricting active management in Wilderness and remote locations, while the climate-informed management strategy was designed to maximize preservation of WBP forests regardless of such constraints. Thus, the climate-informed strategy highlighted how the spatial location of management actions might need to shift to most effectively maintain WBP forests under future climate conditions. The spatial distribution of actions and area treated differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing and monitoring of management actions. Our method for prioritizing locations for climate-adaptation actions is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.