Drought

Abstract (from http://www.sciencedirect.com/science/article/pii/S2212096317300153): In recent years, federal land management agencies in the United States have been tasked to consider climate change vulnerability and adaptation in their planning. Ecological vulnerability approaches have been the dominant framework, but these approaches have significant limitations for fully understanding vulnerability in complex social-ecological systems in and around multiple-use public lands. In this paper, we describe the context of United States federal public lands management with an emphasis on the Bureau of Land Management to highlight this unique decision-making context. We then assess the strengths and weaknesses of an ecological vulnerability approach for informing decision-making. Next, we review social vulnerability methods in the context of public lands to demonstrate what these approaches can contribute to our understanding of vulnerability, as well as their strengths and weaknesses. Finally, we suggest some key design principles for integrated social-ecological vulnerability assessments considering the context of public lands management, the limits of ecological vulnerability assessment, and existing approaches to social vulnerability assessment. We argue for the necessity of including social vulnerability in a more integrated social-ecological approach in order to better inform climate change adaptation.

In the North Central U.S., drought is a dominant driver of ecological, economic, and social stress. Drought conditions have occurred in the region due to lower precipitation, extended periods of high temperatures and evaporative demand, or a combination of these factors. This project will continue ongoing efforts to identify and address climate science challenges related to drought, climate extremes, and the water cycle that are important for natural resource managers and scientists in the North Central region, to support adaptation planning.   To accomplish this goal, researchers sought to (1) provide data and synthesis on drought processes in the region and on how evaporative stress on ecosystems will change during the 21st century; (2) work with stakeholders to provide climate data that can be used to assess climate impacts; (3) improve the usability of an existing drought early warning and monitoring tool known as the Evaporative Drought Demand Index; and (4) develop a new drought monitoring tool to provide better information about moisture availability in soils. Researchers aim to continue to develop and provide information on potential future climate conditions for specific areas that are of interest to stakeholders, in order to understand potential impacts and develop adaptation strategies.   This project team is part of the North Central Climate Science Center’s Climate Drivers Foundational Science Area Team, which supports foundational research and advice, guidance, and technical assistance to other NC CSC projects as they address climate science challenges that are important for land managers and ecologists in the region.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from 12 Coupled Model Intercomparison Project - Phase 5 (CMIP5) climate model simulations (6GCMs x 2RCPs) which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. Six GCMs were selected for developing this dataset. This selection was done to facilitate availability of several divergent future scenarios for the north central US region, and are selected based on (a) divergence found for future changes in annual temperature and precipitation for the region based on the projections from 34 CMIP5 GCMs for both RCP 4.5 and RCP 8.5 emissions scenarios, as well as (b) their relatively higher accuracy in representing the historic climate for the western and central US region. The six GCMs include CanESM2, CCSM4, CNRM-CM5, GFDL-ESM2M, HadGEM2-ES and IPSL-CM5A-MR. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This project conducts an interdisciplinary, technical assessment of key social-ecological vulnerabilities, risks, and response capacities of the Wind River Indian Reservation (WRIR) to inform development of decision tools to support drought preparedness. It also provides opportunities for 1) development of tribal technical capacity for drought preparedness, and 2) educational programming guided by tribal needs, Traditional Ecological Knowledge (TEK), and indigenous observations of drought for tribal members, with a longer-term goal of transferring lessons learned to other tribes and non-tribal entities. This project has foundational partnerships between the Eastern Shoshone and Northern Arapaho tribes of the WRIR, the National Drought Mitigation Center (NDMC) at the University of Nebraska-Lincoln, the North Central Climate Science Center (NCCSC) at Colorado State University, University of Wyoming EPSCoR, and multiple government agencies and university partners to develop decision tools to support drought preparedness. Other partners include the USDA Northern Plains Regional Climate Hub and NRCS, the Western Water Assessment at CU Boulder, NOAA National Integrated Drought Information System (NIDIS), the High Plains Regional Climate Center, US Fish and Wildlife Service, USGS, BIA, Great Northern LCC, and other North Central University Consortium scientists. The project’s decision target is a WRIR Drought Management Plan that integrates state-of-the art climate science with hydrologic, social, and ecological vulnerabilities and risks, and identifies response capacities and strategies to support the Tribal Water Code and related resources management.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the Canadian Centre for Climate Modeling and Analysis model, CanESM2, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the National Center of Atmospheric Research (USA) model, CCSM4, simulations (r6i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the National Centre of Meteorological Research (France) model, CNRM-CM5, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the NOAA Geophysical Fluid Dynamics Laboratory (USA) model, GFDL-ESM2M, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the Met Office Hadley Center (UK) model, HadGEM2-ES, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the Institut Pierre Simon Laplace (France) model, IPSL-CM5A-MR, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.