Wildlife and Plants

Historical and projected suitable habitat of 14 tree and shrub species a under CCSM4 GCMs from 2000 to 2099 was predicted to assess projected climate change impacts in forest communities of North Central U.S. We obtained presence/absence record of each species from Forest Inventory and Analysis (FIA) data. required ata. Historical tme period ranges from 1971 to 2000, and projected time period ranges from 2071 to 2100. Random Forest was used to project historical and future suitable habitat of all species across West U.S. using the Biomod2 software programmed in R environment. We adopted a climate change scenarios generated from the experiments conducted under fifth assessment of Coupled Model Intercomparison Project (CMIP5) for the Intergovernmental Panel on Climate Change. Selected climate change scenarios include high representative concentrative pathway (RCP8.5).

Abstract (from OxfordAcademic): The whitebark pine (Pinus albicaulis Engelm.) tree species faces precipitously declining populations in many locations. It is a keystone species found primarily in high-elevation forests across the Western US. The species is an early responder to climate change and qualifies for endangered species protection. We use contingent valuation to estimate the public’s willingness to pay for management of the whitebark pine species. In contrast, previous work centres on valuing broader aspects of forest ecosystems or threats to multiple tree species. While only approximately half of the survey respondents have seen whitebark pine, the mean willingness to pay for whitebark pine management is $135 per household. When aggregated across all households from the three sampled states, willingness to pay totals $163 million. This information is valuable to forest managers who must make difficult decisions in times of resource constraints and climate change.

The sagebrush ecosystem is home to diverse wildlife, including big-game and Greater sage-grouse. Historic and contemporary land-uses, large wildfires, exotic plant invasion, and woodland expansion all represent threats to this multiple-use landscape. Efforts of federal and state agencies and private landowners across the landscape are focused on restoration and maintenance of conditions that support wildlife, livestock, energy development, and many other uses. However, this semi-arid landscape presents challenges for management due to highly variable patterns in growing conditions that lead to differences in plant composition, fuel accumulation, and vegetation recovery. Much of this variability is created by soil and climate conditions. Because of their fundamental effects on plant growth, soil and climate patterns can be used to predict plant growth and regeneration. This information can then help managers understand the long-term persistence of ecosystems, resilience after wildfires and habitat treatments, and the potential for invasive weeds such as cheatgrass to spread.   This project focuses on better understanding the resistance and resilience of the sagebrush landscape to habitat change. The resistance of an ecosystem refers to how well it can maintain its processes when subjected to stress, such as a drought or wildfire, while the resilience of an ecosystem refers to how well it can recover from a stressor or adapt to changing conditions. To do this, researchers will characterize future variability in the soil environment and the sensitivity of growing conditions to potential future changes in temperature and precipitation. Instead of broadly classified climate regions, researchers will model a continuous surface of grid cells using the soil and climate conditions unique to each location. This enables the development of estimates of soil temperature and moisture across a large landscape that take into account both local and landscape-scale conditions. Researchers will also incorporate scenarios of potential future changes in temperature and precipitation, to assess the implications of these changes for habitat conditions, restoration outcomes, and fuel profiles. A better understanding of the patterns of plant production, resistance of the sagebrush ecosystem to invasion by non-native plants, and resilience of the ecosystem following wildfires can inform habitat management activities, such as restoration and reclamation.

Prairies were once widespread across North America, but are now one of the most endangered and least protected ecosystems in the world. Agriculture and residential development have reduced once extensive prairies into a patchwork of remnant prairies and “surrogate” grasslands (e.g., hayfields, planted pastures). Grassland ecosystems and many grassland-dependent birds are also particularly vulnerable to rapid shifts in climate and associated changes in drought and extreme weather.   The Central Flyway is a vast bird migration route that comprises more than half of the continental U.S., and extends from Central America to Canada, and harbors the greatest diversity of grassland birds in North America. Throughout this region, numerous agencies and organizations are entrusted with the management of grassland ecosystems and the species that depend on them in landscapes extensively altered by human activities. Today, they face the additional challenge of managing these ecosystems in the face of a rapidly changing climate.   The goal of this project is to synthesize the vulnerability of grassland ecosystems to climate change across the Central Flyway, with an emphasis on grassland-dependent migratory birds. Researchers will synthesize the state of the science, including providing a robust assessment of how climate variables directly and indirectly (via land use change) affect grassland habitats and migratory bird populations. Researchers will also review current and future adaptation strategies for the conservation of grassland ecosystems and grassland-dependent birds. This effort will result in a synthesis of key management strategies and future research needs related to the conservation of migratory grassland bird populations in the Central Flyway in the face of climate change.

Abstract (from ScienceDirect): Dryland ecosystems play an important role in determining how precipitation anomalies affect terrestrial carbon fluxes at regional to global scales. Thus, to understand how climate change may affect the global carbon cycle, we must also be able to understand and model its effects on dryland vegetation. Dynamic Global Vegetation Models (DGVMs) are an important tool for modeling ecosystem dynamics, but they often struggle to reproduce seasonal patterns of plant productivity. Because the phenological niche of many plant species is linked to both total productivity and competitive interactions with other plants, errors in how process-based models represent phenology hinder our ability to predict climate change impacts. This may be particularly problematic in dryland ecosystems where many species have developed a complex phenology in response to seasonal variability in both moisture and temperature. Here, we examine how uncertainty in key parameters as well as the structure of existing phenology routines affect the ability of a DGVM to match seasonal patterns of leaf area index (LAI) and gross primary productivity (GPP) across a temperature and precipitation gradient. First, we optimized model parameters using a combination of site-level eddy covariance data and remotely-sensed LAI data. Second, we modified the model to include a semi-deciduous phenology type and added flexibility to the representation of grass phenology. While optimizing parameters reduced model bias, the largest gains in model performance were associated with the development of our new representation of phenology. This modified model was able to better capture seasonal patterns of both leaf area index (R2 = 0.75) and gross primary productivity (R2 = 0.84), though its ability to estimate total annual GPP depended on using eddy covariance data for optimization. The new model also resulted in a more realistic outcome of modeled competition between grass and shrubs. These findings demonstrate the importance of improving how DGVMs represent phenology in order to accurately forecast climate change impacts in dryland ecosystems.

Abstract (from Diversity and Distributions):  Aim Surrogate species can provide an efficient mechanism for biodiversity conservation if they encompass the needs or indicate the status of a broader set of species. When species that are the focus of ongoing management efforts act as effective surrogates for other species, these incidental surrogacy benefits lead to additional efficiency. Assessing surrogate relationships often relies on grouping species by distributional patterns or by species traits, but there are few approaches for integrating outputs from multiple methods into summaries of surrogate relationships that can inform decision‐making. Location Prairie Pothole Region of the United States. Methods We evaluated how well five upland‐nesting waterfowl species that are a focus of management may act as surrogates for other wetland‐dependent birds. We grouped species by their patterns of relative abundance at multiple scales and by different sets of traits, and evaluated whether empirical validation could effectively select among the resulting species groupings. We used an ensemble approach to integrate the different estimated relationships among species and visualized the ensemble as a network diagram. Results Estimated relationships among species were sensitive to methodological decisions, with qualitatively different relationships arising from different approaches. An ensemble provided an effective tool for integrating across different estimates and highlighted the Sora (Porzana carolina), American Avocet (Recurvirostra Americana) and Black Tern (Chlidonias niger) as the non‐waterfowl species expected to show the strongest incidental surrogacy relationships with the waterfowl that are the focus of ongoing management. Main conclusions An ensemble approach integrated multiple estimates of surrogate relationship strength among species and allowed for intuitive visualizations within a network. By accounting for methodological uncertainty while providing a simple continuous metric of surrogacy, our approach is amenable to both further validation and integration into decision‐making.

Globally, spring phenology and abiotic processes are shifting earlier with warming. Differences in the magnitudes of these shifts may decouple the timing of plant resource requirements from resource availability. In riparian forests across the northern hemisphere, warming could decouple seed release from snowmelt peak streamflow, thus reducing moisture and safe sites for dominant tree recruitment. We combined field observations with climate, hydrology, and phenology models to simulate future change in synchrony of seed release and snowmelt peaks in the South Platte River Basin, Colorado, for three Salicaceae species that dominate western USA riparian forests. Chilling requirements for overcoming winter endodormancy were strongest in Salix exigua, moderately supported for Populus deltoides, and indiscernible in Salix amygdaloides. Ensemble mean projected warming of 3.5°C shifted snowmelt peaks 10–19 d earlier relative to S. exigua and P. deltoides seed release, because decreased winter chilling combined with increased spring forcing limited change in their phenology. By contrast, warming shifted both snowmelt peaks and S. amygdaloides seed release 21 d earlier, maintaining their synchrony. Decoupling of snowmelt from seed release for Salicaceae with strong chilling requirements is likely to reduce resources critical for recruitment of these foundational riparian forests, although the magnitude of future decoupling remains uncertain.

The Department of the Interior Bison Conservation Initiative calls for its bureaus to plan and implement collaborative American bison conservation and to ensure involvement by tribal, state, and local governments and the public in that conservation. Four independently managed and geographically separated National Park Service (NPS) units in Interior Region 5 (IR5) preserve bison and other components of a formerly contiguous Great Plains landscape. Management of bison in IR5 parks has historically been specific to each park, and livestock and range management science informed much of the decision making. In the past two decades, NPS has shifted away from managing bison from this livestock-based perspective towards a wildlife stewardship approach, including ensuring their long-term adaptive potential and considering them as just one part of a complex ecosystem. This shift requires a more holistic and cooperative approach to stewardship that is challenging not only because of limitations in funding and fluctuations in leadership priorities, but also because of the constraints imposed by the parks’ relatively small, fenced areas. The IR5 NPS Bison Stewardship Strategy (“Strategy”) will help the NPS to meet its responsibilities in cooperative stewardship of bison. The Strategy will serve to organize and consolidate the NPS’s legal and policy responsibilities within a framework of collectively defined values and objectives to support the careful and transparent decision-making processes that both guide and transcend parkspecific planning. This report describes a preliminary decision framework for the Strategy, including the context, the fundamental objectives, and a range of alternative strategies developed and considered through two workshops and a series of conference calls with NPS personnel, stakeholders, and outside experts with an interest in IR5 NPS bison stewardship. Although not the Strategy itself, this framework serves as the Strategy’s starting point and identifies 14 fundamental objectives, falling in four major themes: Persistence of Wild and Healthy Bison 1. Maximize the long-term persistence of bison in IR5 parks 2. Maximize the long-term adaptive capacity of bison in North America 3. Maximize the wildness of the bison herds 4. Maximize humane treatment of bison, while allowing natural processes to occur

From Summary: "The North American Prairie Pothole Region (PPR) is an expansive region that covers parts of five Midwestern states and three Canadian provinces. The region contains millions of wetlands that produce between 50–80% of the continent’s waterfowl population each year. Previous modeling efforts indicated that climate change would result in a shift of suitable waterfowl breeding habitat from the central PPR to the southeast portion of the region where over half of wetlands have been drained. The implications of adopting these projections would require a massive investment in wetland restoration in the southeastern PPR to sustain migratory waterfowl populations at harvestable levels. We revisited these projections using a newly developed model for simulating prairie-pothole wetland hydrology in combination with the most up-to-date climate model projections to estimate how future climate may impact the distribution of waterfowl-breeding habitat. We also presented our findings in changes to wet May ponds, which is a metric that is used by managers at the US Fish and Wildlife Service to estimate waterfowl breeding populations to establish harvest regulations. Based on the output of 32 climate models and 2 emission scenarios we found a projected change in wet May pond numbers from -23% to +.02% when comparing the most recent climate period (1989–2018) to the end of the 21st century (2070–2099). We also found no evidence that the distribution of wet May ponds will shift in the future. These results suggest that management and conservation strategies for wetlands in the PPR that focus on areas with the high densities of intact wetland basins support large numbers of breeding duck pairs and will likely be the most successful in maintaining habitats critical to continental waterfowl populations."