Social Science

Changing climate conditions can make water management planning and drought preparedness decisions more complicated than ever before.  Federal and State natural resource managers can no longer rely solely on historical trends as a baseline and thus are in need of science that is relevant to their specific needs to inform important planning decisions. Questions remain, however, regarding the most effective and efficient methods for extending scientific knowledge and products into management and decision-making. This project analyzed two unique cases of water management to better understand how science can be translated into resource management actions and decision-making, focusing particularly on how the context of how drought influences ecosystems. In particular, this project sought to understand (1) the characteristics that make science actionable and useful for water resource management and drought preparedness, and (2) the ideal types of scientific knowledge or science products that facilitate the use of science in management and decision making. The first case study focused on beaver mimicry, an emerging nature-based solution that increases the presence of wood and woody debris in rivers and streams to mimic the actions of beavers. This technique has been rapidly adopted by natural resource managers as a way to restore riparian areas, reconnect incised streams with their floodplains, increase groundwater infiltration, and slow surface water flow so that more water is available later in the year during hotter and drier months (Pollock and others 2015). The second case study focused on an established research program, Colorado Dust on Snow, that provides water managers with scientific information explaining how the movement of dust particles from the Colorado Plateau influences hydrology and the timing and intensity of snow melt and water runoff into critical water sources. This program has support from – and is being used by – several water conservation districts in Colorado. Understanding how scientific knowledge translates into action and decision-making in these cases is useful to strengthen knowledge of actionable science for drought management. The project team gathered qualitative data through stakeholder conversations and conducted an extensive literature review. In the case of beaver mimicry, the research identified perceived benefits of and barriers to using beaver mimicry structures and considered how these differ between managers and scientists. The dust on snow case results focused on how and why dust monitoring information is used. Findings from these efforts were also incorporated into a broader Intermountain West Drought Social Science Synthesis effort to determine and assess commonalities and differences among socio-ecological aspects of drought adaptation and planning.

Science produced by the National and Regional Climate Adaptation Science Center (CASC) network must ideally be scientifically sound, relevant to a management decision, fair and respectful of stakeholders’ divergent values, and produced through a process of iterative collaboration between scientists and managers. However, research that aims to produce usable knowledge and collaborative approaches that boost usability are not common in academia or federal research programs. As a result, neither the process of creating such research nor the impacts to stakeholders are well understood or well documented. This lack of attention to the processes and impacts of collaborative scientist-stakeholder knowledge production also limits our ability to evaluate research outcomes beyond standard academic metrics such as number of peer reviewed journal publications, conference presentations, or students trained.   CASC-funded researchers have previously proposed a cohort of 45 indicators for evaluating the co-production of climate knowledge by conducting a review of the academic literature, examining metrics used by other agencies to evaluate usable science, and compiling insights from experienced researchers and managers. While this research has resulted in a rich set of data, constraints on resources, such as time and funding, have limited the team to working with a small sample of case study projects from the Southwest and Northwest CASCs.   This project will address the issue of scalability in evaluation, both in terms of number of projects evaluated and number of stakeholders targeted. An evaluation approach that encompasses a center’s full portfolio of projects will better enable the intercomparison of funding choices and co-production approaches. This evaluation will focus on completed projects from the North Central and South Central CASCs. Researchers will distribute a survey to targeted stakeholders in order to learn more about their interactions with project teams and their use of specific products. Results from this project will inform decisions made by the CASC network about future projects in order to ensure good stewardship of federal funds.

Abstract from SpringLink: Many western communities are surrounded by public lands that support land-based and local economies. Bureau of Land Management (BLM) decision-making affects the vulnerability of those land-based livelihoods, especially in the context of climate change. We analyzed Colorado BLM planning documents to evaluate how they are considering climate change, sensitive resources, impacts, and land-based livelihoods in their planning processes using both quantitative word counts and qualitative coding. Documents published in recent years (2011–2015) include more mentions of climate change than older documents (1985–1997). However, the review showed that while climate change is discussed within the National Environmental Policy Act (NEPA) planning documents, the final Resource Management Plans contain few mentions of climate change. Further, there is minimal consideration of how climate change may impact land-based livelihoods. These results prompt questions about the planning process, how climate change considerations are integrated into the final documents, and how that impacts on-the-ground management. The review suggests a need for increased consideration of climate change throughout the BLM’s planning process so that landscapes can be managed with more attention and awareness to climate change and the associated impacts to resources and dependent communities.

Abstract (from DigitalCommons@University of Nebraska - Lincoln): Native American peoples of the Northern and Central Plains have long endured harsh climate conditions, such as floods and droughts, and they possess valuable traditional knowledges that have enhanced their resilience to these extreme events. However, in recent times, limited capacity to adapt to a rapidly changing climate combined with a lack of resources have increased tribes’ vulnerability to climate extremes and their associated impacts. In response, a number of projects have been developed to assist tribes with their self-identified climate- and drought-related needs, particularly in the context of on-reservation decision-making. In this case study, we present an engagement strategy that was piloted for the tribes of the Wind River Indian Reservation in Wyoming and replicated for other tribes across the Northern and Central Plains. We found that frequent, face-to-face interactions between tribal and scientific communities builds relationships and trust between these two groups. We also found that climate capacity-building projects that include a diverse team of physical and social scientists, as well as tribal members, provide the greatest benefit to tribes. Finally, we found that these capacity-building projects can help reinforce tribal sovereignty.