Covering 120 million acres across 14 western states and 3 Canadian provinces, sagebrush provides critical habitat for species such as pronghorn, mule deer, and sage-grouse – a species of conservation concern. The future of these and other species is closely tied to the future of sagebrush. Yet this important ecosystem has already been affected by fire, invasive species, land use conversion, and now, climate change.   In the western U.S., temperatures are rising and precipitation patterns are changing. However, there is currently a limited ability to anticipate the impacts of climate change on sagebrush. Current methods suffer from a range of weakness that limits the reliability of results. In fact, the current uncertainty about future changes in sagebrush has been identified as a critical constraint on climate change adaptation planning in the West. To address this need, researchers forecasted the effects of climate change on the distribution and abundance of sagebrush, and integrated several modeling approaches that take into account historical data, disturbances such as fire, and changes in temperature and precipitation. This integrated method is expected to produce more accurate estimates of future sagebrush distribution and abundance.   The results of this research will be effectively communicated to land managers so that they can inform conservation planning, and sage-grouse management in particular, across the Intermountain West. Improved sagebrush forecasting will increase the capacity of land managers to prioritize future investments in sagebrush conservation and management by identifying areas where sagebrush are most and least vulnerable to climate change.

This capacity-building activity supported three tribal college and university (TCU) mini-­grants to initiate student phenological and meteorological observation projects in support of climate change research, to document impacts of climate change and development of indigenous geography curriculum.  Students made observations of culturally and/or traditionally significant plants to generate data sets for use in climate change impact assessment of these plants and plant communities. The activity contributed to the larger national efforts of the Smithsonian National Museum of the American Indian’s “Indigenous  Geography” curricula, by engaging with students at tribal colleges to explore the linkage between the “seasonality” and “living world” themes. The program promoted the education of the students by introducing them to two national observation networks: the USA National Phenology Network  and the  Community Collaborative Rain, Hail and Snow Network. Data collected as part of these fellowships followed the protocol of these networks and, as such, contribute high-­quality data to the networks.  

Climate change is poised to alter natural systems, the frequency of extreme weather, and human health and livelihoods. In order to effectively prepare for and respond to these challenges in the north-central region of the U.S., people must have the knowledge and tools to develop plans and adaptation strategies. This project was a continuation of an effort begun in 2013 to build stakeholders’ capacity to respond to climate change in the north-central U.S. During the course of this project, researchers focused on two major activities:   Tribal Capacity Building: Researchers provided tribal colleges and universities with mini-grants to develop student projects to document climate-related changes in weather and culturally or traditionally significant plants. Data collected by students were made available for use in climate change impact assessments. The activity contributed to the expansion of the Indigenous Geography Phenology Network, a locally grounded, national network for documenting the impacts of climate change. Additionally, researchers collaborated with the Bureau of Indian Affairs and the National Conservation Training Center to offer a climate training course in Rapid City, South Dakota, directed at tribal environmental professionals.   PhenoCam Analysis: Researchers provided ongoing technical support to maintain and begin to analyze the data from PhenoCams (streaming cameras) located across the north-central region. Observations collected by the PhenoCams were expected to help scientists track seasonal changes across the region and better understand how climate impacts living things.

The National Climate Assessment summarizes the impacts of climate change on the United States, now and in the future. A team of more than 300 experts guided by a 60-member Federal Advisory Committee produced the report, which was extensively reviewed by the public and experts, including federal agencies and a panel of the National Academy of Sciences. The report can be explored interactively at http://nca2014.globalchange.gov.

Ecological niche models predict plant responses to climate change by circumscribing species distributions within a multivariate environmental framework. Most projections based on modern bioclimatic correlations imply that high-elevation species are likely to be extirpated from their current ranges as a result of rising growing-season temperatures in the coming decades. Paleoecological data spanning the last 15,000 years from the Greater Yellowstone region describe the response of vegetation to past climate variability and suggest that white pines, a taxon of special concern in the region, have been surprisingly resilient to high summer temperature and fire activity in the past. Moreover, the fossil record suggests that winter conditions and biotic interactions have been critical limiting variables for high-elevation conifers in the past and will likely be so in the future. This long-term perspective offers insights on species responses to a broader range of climate and associated ecosystem changes than can be observed at present and should be part of resource management and conservation planning for the future.

Abstract (from http://link.springer.com/article/10.1007/s00382-015-2692-0/fulltext.html): The future rate of climate change in mountains has many potential human impacts, including those related to water resources, ecosystem services, and recreation. Analysis of the ensemble mean response of CMIP5 global climate models (GCMs) shows amplified warming in high elevation regions during the cold season in boreal midlatitudes. We examine how the twenty-first century elevation-dependent response in the daily minimum surface air temperature [d(ΔTmin)/dz] varies among 27 different GCMs during winter for the RCP 8.5 emissions scenario. The focus is on regions within the northern hemisphere mid-latitude band between 27.5°N and 40°N, which includes both the Rocky Mountains and the Tibetan Plateau/Himalayas. We find significant variability in d(ΔTmin)/dz among the individual models ranging from 0.16 °C/km (10th percentile) to 0.97 °C/km (90th percentile), although nearly all of the GCMs (24 out of 27) show a significant positive value for d(ΔTmin)/dz. To identify some of the important drivers associated with the variability in d(ΔTmin)/dz during winter, we evaluate the co-variance between d(ΔTmin)/dz and the differential response of elevation-based anomalies in different climate variables as well as the GCMs’ spatial resolution, their global climate sensitivity, and their elevation-dependent free air temperature response. We find that d(ΔTmin)/dz has the strongest correlation with elevation-dependent increases in surface water vapor, followed by elevation-dependent decreases in surface albedo, and a weak positive correlation with the GCMs’ free air temperature response.

UNL scientists are part of a coalition helping two American Indian tribes prepare for drought and other climate fluctuations. The tribes — the Eastern Shoshone and Northern Arapaho, both located on the Wind River Indian Reservation in western Wyoming — have worked with climate and social scientists in the past year to prepare regular climate and drought summaries for use in making water and resource decisions. A second phase, launched this summer, includes UNL's Cody Knutson and will generate a vulnerability assessment designed to help the tribes reduce the likelihood of future drought-related impacts. Read More:   http://news.unl.edu/newsrooms/unltoday/article/researchers-help-tribes-enhance-drought-and-climate-resilience/