On the Western Slope of Colorado, variable climate and precipitation conditions are typical. Periods of drought—which may be defined by lack of water, high temperatures, low soil moisture, or other indicators—cause a range of impacts across sectors, including water, land, and fire management.The Western Slope’s Upper Colorado River Basin (UCRB) was one of the first pilot areas in which the National Integrated Drought Information System (NIDIS) implemented a drought early warning system (DEWS) in 2009. NIDIS presently supports eight regional DEWS; as of 2016, the UCRB DEWS has been incorporated into an expanded Intermountain West (IMW) DEWS. The selection of the UCRB for an initial DEWS reflects the regional importance of drought information for managing water supply for agriculture and other uses, and the need for effective decision support related to drought. Additionally, new drought information products were developed specifically for the UCRB DEWS, and a number of others have been created since 2009, adding to the preexisting toolkit for drought decision making.The various elements of the UCRB drought early warning system can be expected to be more or less suitable for the needs of different decision makers. As a result, the UCRB makes an ideal case study to examine the use of scientific information products and tools in which the broad decision context (managing drought) is defined, but information needs of current and prospective users vary. Thus decision makers will make varied choices about which of the available tools to use or not use, depending on the particular management and institutional context in which they work. This report investigates the factors that affect the choices of decision makers about whether and how to use particular information sources, products, and tools. The investigation focused on the following research questions:What decisions do managers make related to drought in the Upper Colorado region and particularly the Western Slope of Colorado? About which impacts of drought are they most concerned?What indicators and information products do decision makers rely on to manage for the impacts of drought in this region?How do decision makers find out about and choose between available drought information sources, products, and tools?What gaps (if any) do they perceive in currently available drought information and tools?Studies of decision support tools or information sources often concentrate on the known users of a given tool(s). Such an approach can yield useful information; it provides rich insight into the experiences of users and can suggest design modifications to make existing tools more effective. Yet it is not an effective approach to capture the perspectives and needs of prospective tool users or to investigate the factors that affect whether or not someone chooses to use tools in the first place. To overcome this challenge, in this study the author instead used a geographically based sampling strategy in which a range of natural resource managers from preidentified Federal management units and selected State agencies on the Western Slope were considered prospective users of tools. Prospective users were then asked to describe in an open-ended fashion what information and tools they do or do not use and why. This approach allowed for respondents to report both use and nonuse of tools, and thus the ability to identify factors that influence information and tool use choices by managers.

In the previous first phase of the Impacts and Vulnerability project, we made substantial progress in assessing climate and land use change impacts across the NCCASC domain. These include: quantifying the rates of land use change in greater wildland ecosystems (GWEs), determining the extent of fragmentation in major ecosystems across GWEs, assessing climate change impacts on public, private, and tribal lands within GWEs, evaluating evaporative demands across hydroclimatic gradients of eight ecoregions across north central U.S., and predicting forest ecosystem responses to climate change. We found that rates of climate and land use change varied across the Great Plains and Rocky Mountains, as did the responses of ecosystems to these changes. We also identified the major locations highly impacted by these changes that call for crafting locally relevant adaptation strategies to cope with these changes. This second phase of the project (FY’17) aimed to generate coproduction of knowledge with a wide range of stakeholders to support decision making for the management and conservation of affected areas. During this FY’17 phase of the project, we worked with various user groups to evaluate potential land use and climate impacts and adaptation strategies for the most affected areas and ecosystem types identified by our previous work. Specifically, we focused on forest and shrubland vegetation and habitat of a selected wildlife species (Gulo gulo) in the Rocky Mountains and Washington Cascade regions. We also designed and produced resource briefs on land use and climate change assessments of selected areas and ecosystem types to provide information to coordinated management. Thirdly, we conducted series of webinars and workshops with federal, private, and NGO stakeholders to draw on all of the science results (e.g., from species distribution models, state and transition models, and mechanistic models) to identify and evaluate vegetation climate adaptation strategies for the Custer Gallatin National Forest Plan Revision that are robust under climate uncertainty.    

Land use change ranges in each panel are in acres per thousand county acres. The white colored counties represent missing yields for at least one crop in all years.

2006 Land Use in the Dakotas (Cropland Data Layer, USDA NASS). The color legend represents various land use types in the region.

Historical (1981-2005) vs. Projected (2031-’55) Yields. Each year’s crop yields are calculated as an average of all counties in North and South Dakota. Hashed representations of projected yields are from RCP 4.5 emissions scenario from seven GCMs, namely CESM (Community Earth System Model), CNRM (Center National de Recherches Météorologiques (France)), GFDL (Geophysical Fluid Dynamics Laboratory), GISS (Goddard Institute of Space Studies), HADGEM (Hadley Global Environment Model), IPSL (Institut Pierre-Simon Laplace (France)) and MIROC (Model for Interdisciplinary Research on Climate). Median projection in a given year is calculated by taking the median yield value of the yield projections from each of seven climate model outputs in each county and then taking the average across counties. We restrict spring wheat and alfalfa yield forecasts to zero for years in which these are projected to be negative values.

Abstract (from IOP Science): Global agriculture is challenged to increase soil carbon sequestration and reduce greenhouse gas emissions while providing products for an increasing population. Growing crop production could be achieved through higher yield per hectare (i.e. intensive farming) or more hectares (extensive farming), which however, have different ecological and environmental consequences. Multiple lines of evidence indicate that expanding cropland for additional production may lead to loss of vegetation and soil carbon, and threaten the survival of wildlife. New concerns about the impacts of extensive farming have been raised for the US Corn Belt, one of the world's most productive regions, as cropland has rapidly expanded northwestward unto grasslands and wetlands in recent years. Here we used a process-based ecosystem model to distinguish and quantify how natural drivers as well as intensive and extensive farming practices have altered grain production, soil carbon storage, and agricultural carbon footprint in the US Western Corn Belt since 1980. Compared to the period 1980–2005, we found that cropland expansion more than tripled in the most recent decade (2006–2016), becoming a significant factor contributing to growing grain production. Land use change in this period led to a soil carbon loss of 90.8 ± 14.7 Tg (1 Tg = 1012 g). As a result, grain production in this region shifted from carbon neutral to a carbon loss of 2.3 kg C kg−1 grain produced. The enlarging negative carbon footprint (ΔC/ΔP) indicates the major role that cropland expansion has had on the carbon cost of grain production in this region. Therefore, we should be more cautious to pursue high crop production through agricultural cropland conversion, particularly in those carbon-rich soils.

Drought is a complex environmental hazard that impacts both ecological and social systems. Accounting for the role of human attitudes, institutions, and societal values in drought planning is important to help identify how various drought durations and severity may differentially affect social resilience to adequately respond to and manage drought impacts. While there have been successful past efforts to understand how individuals, communities, institutions, and agencies plan for and respond to drought, these studies have relied on extensive multi-year case studies in specific locations. In contrast, this project seeks to determine how social science insights and methods can best contribute to ecological drought preparedness and resilience in situations where extensive field study is not feasible.  Specifically, the project team will investigate what a rapid social assessment method might look like in the context of ecological drought, how it may be applied, and what benefits it may contribute to drought preparedness and resilience. This method would allow researchers to expeditiously identify and analyze relevant characteristics of the social system that have bearing on the problem of ecological drought and allow water and resource managers, community leaders, and others involved with drought preparedness and response to quickly identify, assess, and measure important social factors that influence the effects of drought to ecosystems. This project will include analyzing currently available rapid assessment methods from other topical areas (including ecological, rural, hazards, etc.) to inform the method to be developed by providing relevant design criteria. A prototype version of the method will be developed and pilot tested with the identified audience to determine effectiveness and strengths and weaknesses.  Finally, the method will be refined and made available more widely to Department of Interior resource managers.

Historical and projected suitable habitat of 14 tree and shrub species a under CCSM4 GCMs from 2000 to 2099 was predicted to assess projected climate change impacts in forest communities of North Central U.S. We obtained presence/absence record of each species from Forest Inventory and Analysis (FIA) data. required ata. Historical tme period ranges from 1971 to 2000, and projected time period ranges from 2071 to 2100. Random Forest was used to project historical and future suitable habitat of all species across West U.S. using the Biomod2 software programmed in R environment. We adopted a climate change scenarios generated from the experiments conducted under fifth assessment of Coupled Model Intercomparison Project (CMIP5) for the Intergovernmental Panel on Climate Change. Selected climate change scenarios include high representative concentrative pathway (RCP8.5).

Landscape Evaporative Response Index (LERI) is remotely-sensed high-resolution information of the evaporative response from the land in near real time. LERI assesses anomalies in actual evapotranspiration (ETa), as percentiles, across the Contiguous US and northern Mexico at a 1-km spatial resolution. LERI is based on the ETa data produced by the U. S. Geological Survey using the operational Simplified Surface Energy Balance (SSEBop) model. SSEBop combines evapotranspiration fraction generated from remotely sensed MODIS thermal imagery, acquired every 8 days, with climatological atmospheric evaporative demand. To quantify LERI, a rank-based, non-parametric method is used to estimate percentiles of the SSEBop ETa, over a period of ETa accumulation, compared to the available period of record (January 2000 to present). LERI percentiles are also binned into four drought categories (LD0 - LD3) analogous to the US Drought Monitor (USDM) categories (i.e. D0-D3) and using the same percentile breaks that USDM considers for soil moisture. By its numerical design, LERI essentially represents the evaporative response of the landscape driven primarily by the anomalous state of soil moisture to meet the climatological atmospheric demand through a combination of evaporation (from soil and leaf surfaces) and transpiration (root-stomata-air) processes. Real-time and high-resolution assessment of this soil moisture state is extremely salient to understanding and forecasting ecological responses. LERI serves as an experimental drought-monitoring and early warning guidance tool and has the potential to inform research into understanding characteristics of Ecological Drought. Preliminary work finds LERI to closely track modeled moisture conditions in the upper soil layers (~10 cm). LERI can complement other drought-monitoring indices and modeled soil moisture products. Work is ongoing to assess LERI’s ability to capture signals of drought early warning, and its unique ability to assess land-surface moisture state. LERI maps, and spatial and historical time series data could be accessed at https://www.esrl.noaa.gov/psd/leri/.