Abstract (from Diversity and Distributions):  Aim Surrogate species can provide an efficient mechanism for biodiversity conservation if they encompass the needs or indicate the status of a broader set of species. When species that are the focus of ongoing management efforts act as effective surrogates for other species, these incidental surrogacy benefits lead to additional efficiency. Assessing surrogate relationships often relies on grouping species by distributional patterns or by species traits, but there are few approaches for integrating outputs from multiple methods into summaries of surrogate relationships that can inform decision‐making. Location Prairie Pothole Region of the United States. Methods We evaluated how well five upland‐nesting waterfowl species that are a focus of management may act as surrogates for other wetland‐dependent birds. We grouped species by their patterns of relative abundance at multiple scales and by different sets of traits, and evaluated whether empirical validation could effectively select among the resulting species groupings. We used an ensemble approach to integrate the different estimated relationships among species and visualized the ensemble as a network diagram. Results Estimated relationships among species were sensitive to methodological decisions, with qualitatively different relationships arising from different approaches. An ensemble provided an effective tool for integrating across different estimates and highlighted the Sora (Porzana carolina), American Avocet (Recurvirostra Americana) and Black Tern (Chlidonias niger) as the non‐waterfowl species expected to show the strongest incidental surrogacy relationships with the waterfowl that are the focus of ongoing management. Main conclusions An ensemble approach integrated multiple estimates of surrogate relationship strength among species and allowed for intuitive visualizations within a network. By accounting for methodological uncertainty while providing a simple continuous metric of surrogacy, our approach is amenable to both further validation and integration into decision‐making.

Globally, spring phenology and abiotic processes are shifting earlier with warming. Differences in the magnitudes of these shifts may decouple the timing of plant resource requirements from resource availability. In riparian forests across the northern hemisphere, warming could decouple seed release from snowmelt peak streamflow, thus reducing moisture and safe sites for dominant tree recruitment. We combined field observations with climate, hydrology, and phenology models to simulate future change in synchrony of seed release and snowmelt peaks in the South Platte River Basin, Colorado, for three Salicaceae species that dominate western USA riparian forests. Chilling requirements for overcoming winter endodormancy were strongest in Salix exigua, moderately supported for Populus deltoides, and indiscernible in Salix amygdaloides. Ensemble mean projected warming of 3.5°C shifted snowmelt peaks 10–19 d earlier relative to S. exigua and P. deltoides seed release, because decreased winter chilling combined with increased spring forcing limited change in their phenology. By contrast, warming shifted both snowmelt peaks and S. amygdaloides seed release 21 d earlier, maintaining their synchrony. Decoupling of snowmelt from seed release for Salicaceae with strong chilling requirements is likely to reduce resources critical for recruitment of these foundational riparian forests, although the magnitude of future decoupling remains uncertain.

The Climate Adaptation Science Centers have conducted numerous training and skills development activities to support tribal and indigenous partners as they seek to use scientific information and techniques to understand and respond to climate change impacts. Because these activities were generated in different CASC regions, with different tribal / indigenous stakeholders, climate change contexts, and training needs, and because the CASC network encourages innovation, these activities were not developed or implemented in a nationally consistent format. This project seeks to identify relevant activities, gather related materials and links that might benefit others seeking to implement similar activities, provide a basic assessment of content and skills provided across the network, and identify significant apparent gaps in providing these critical skills. It is expected that future phases of this work will seek to develop a more-coherent training curriculum and framework.

Abstract (from ScienceDirect): Paleohydrologic records can provide unique, long-term perspectives on streamflow variability and hydroclimate for use in water resource planning. Such long-term records can also play a key role in placing both present day events and projected future conditions into a broader context than that offered by instrumental observations. However, relative to other major river basins across the western United States, a paucity of streamflow reconstructions has to date prevented the full application of such paleohydrologic information in the Upper Missouri River Basin. Here we utilize a set of naturalized streamflow records for the Upper Missouri and an expanded network of tree-ring records to reconstruct streamflow at thirty-one gaging locations across the major headwaters of the basin. The reconstructions explain an average of 68% of the variability in the observed streamflow records and extend available records of streamflow back to 886 CE on average. Basin-wide analyses suggest unprecedented hydroclimatic variability over the region during the Medieval period, similar to that observed in the Upper Colorado River Basin, and show considerable synchrony of persistent wet-dry phasing with the Colorado River over the last 1200 years. Streamflow estimates in individual sub-basins of the Upper Missouri demonstrate increased spatial variability in discharge during the Little Ice Age (∼1400–1850 CE) compared with the Medieval Climate Anomaly (∼800–1400 CE). The network of streamflow reconstructions presented here fills a major geographical void in paleohydrologic understanding and now allows for a long-term assessment of hydrological variability over the majority of the western U.S.

Although drought is a natural part of climate across the north-central United States, how drought is experienced and responded to is the result of complex biophysical and social processes. Climate change assessments indicate drought impacts will likely worsen in the future, which will further challenge decision-making. Here, a drought management decision typology is empirically developed from synthesis of three in-depth case studies using a modified grounded-theory approach. The typology highlights 1) the entity or entities involved, 2) management sectors, 3) decision types, 4) spatial and temporal scale(s) of decision-making, and 5) barriers that inhibit decision-making. Findings indicate similarities in decision types and barriers across cases. Changes in operations, practices, or behaviors; information and technology; and legal or policy changes were the most common decision types, while commonly cited barriers were institutional constraints, fragmented decision-making, and limited personnel and financial resources. Yet barriers and responses also differed within and between sectors and jurisdictions. Several barriers inhibited anticipatory, regional, and interagency drought response, such as limited institutional support, competing mandates, limited resources, lack of usable information, limits to interagency fund transfers, and historical context and distrust among entities. Findings underscore the importance of documenting nuanced decision-making in local places and broader generalizations in decision-making across scales. This contributes to the goal of developing drought science that is actionable for decision-making.

From Public Summary: (One of the greatest challenges facing resource managers today is not knowing exactly when, where, and how climate change effects will unfold. In order to plan for this uncertain future, managers have begun to use a tool known as climate change scenario planning, in which data from climate models are used to identify different plausible future climate conditions and their impacts, known as “scenarios,” for a specific area.   In a previous project, we (scientists with the North Central Climate Adaptation Science Center, U.S. Geological Survey, and National Park Service) worked with natural resource managers at Badlands National Park and on surrounding federal and tribal lands to assess how different climate conditions and management activities would affect the area’s resources. To make the results of this work more accessible to managers and the public, the present project produced a National Park Service “Resource Brief” summarizing insights from a scenario planning workshop and an ecological simulation model built specifically for the focus area. The Brief highlights actions that the park can take to address resource management challenges associated with the range of plausible climate futures.   Building on the work at Badlands, we also designed and pilot-tested a process for deeply integrating climate change scenario planning into National Park Service (NPS) Resource Stewardship Strategies. These strategies are part of NPS’s streamlined approach for guiding prioritization of a park’s investments in resource stewardship. The process we designed helped managers at the case study park – Devils Tower National Monument – adjust their resource management goals to be achievable across the range of plausible climate futures, and to prioritize activities that will prepare the park for whatever future climate materializes.   We then documented this integration process as a supplement to standard Resource Stewardship Strategy preparation guidance followed by each park as it develops its Strategy. This allows the lessons learned in this case study to be applied to many other parks across the nation.)  

Abstract From: (The growth and distribution of plant species in water limited environments is often limited by the atmospheric evaporative demands which us measured in terms of potential evaporation (PET). While PET estimated by different methods have been widely used to assess vegetation response to climate change, species distribution models offer unique opportunity to compare their efficiency in predicting habitat suitability of plant species. In this study, we perform the first multi-species comparison of two widely used metrics of PET i.e., Penman-Monteith and Thornthwaite, and show how they result in similar or different on projected distribution of water limited species and potential consequences on their conservation strategies across North Central U.S. To build species distribution models of eight species, we used two sets of environmental predictors which were identical except for the metric of PET (Penman-Monthith vs Thornthwaite) and projected habitat suitability for historical (2005) and future (0399) periods. We found an excellent model performance with no difference under two sets of predictors (AUC + ~0.93). The relative influence of Thornthwaite PET on habitat prediction was higher than Penman PET for most of the species. We observered that the area of the projected suitable habitat was always higher under Thornthwaite set of predictors which were than Penman set of predictors (ranges from 25% to 941%), with the exception of Pinus contorta for which the reverse was true. In most cases, these differences were non-trivial, indicating that the choice of the PET metric, although both of them are commonly used, can have dramatic consequences on the conservation management decisions. Therefore, the conservation management decisions can be markedly different depending on the choice of the PET metric used for species distribution modeling of water limited species.)