Locating meadow study sitesMeadow centers as recorded in the ‘Copy of sitecords_areaelev from Caruthers thesis.xls’ file delivered by Debinski in November 2012 were matched to polygons as recorded in files ‘teton97map_area.shp’ and ‘gallatin97map_area.shp’ both also delivered by Debinski in November 2012.In cases where the meadow center did not fall within a meadow polygon, if there was a meadow polygon of the same meadow TYPE nearby (judgment was used here), the meadow center was matched with the meadow polygon of same meadow TYPE. In total, 29 of 30 Gallatin meadow sites and 21 of 25 Teton meadow sites were positively located.Identifying meadow pixels for analysisThe native MODIS 250-meter grid was reprojected to match meadow data and added to the GIS project window along with the meadow polygons. For context, aerial photography from ESRI’s basemap streaming services were also added to the ArcMap project. MODIS pixels that were at least half-covered by meadow polygon area were used in further ndvi analysis. Meadows that did not cover at least half of one MODIS pixel were eliminated from the analysis. In total, 17 Gallatin meadow sites (M1= 0; M2= 0; M3= 4; M4= 4; M5= 4; M6=5), covering at least half of 39 MODIS pixels (M1= 0; M2= 0; M3= 12; M4= 4; M5= 6; M6= 17), were used in further analysis and 16 Teton meadow sites (M1=3; M2=1; M3=4; M5=5; M6=3) covering at least half of 1252 MODIS pixels (M1= 105; M2= 1; M3= 25; M4=0 ; M5= 19; M6=1102), were used in further analysis.List of site names that were located, but not used in the NDVI analysis b/c they were too small: Gallatin – Porcupine Exclosure; Twin Cabin Willows; Figure 8; Taylor Fork; Teepee Sage; Daly North; Wapiti (Taylor Fork); Specimen Creek; Bacon Rind M1; Bacon Rind M4, Teepee wet; Daly SouthTeton – Cygnet Pond; Christian Pond; Willow Flats North; Willow Flats South; Sound of MusicMODIS preprocessing methods: MODIS MOD13Q1 representing observations of normalized difference vegetation index (NDVI) from March 2000 through December 2012 were downloaded from the USGS Land Processes Distributed Area Archive Center (LPDAAC) during the spring of 2013. Also downloaded at the same time were grids that described the estimated reliability of NDVI observations and the actual day of the year for each NDVI observation used in maximum compositing routines by the MODIS program. All MODIS data layers were reprojected to match meadow data layers.All negative NDVI values which are thought to correspond to standing water, partial snow-cover or wet bare soil were set to ‘NA’values (Huete, Justice and van Leeuwen 1999)The following steps were used to remove any conifer/evergreen signal from NDVI data and are based on an understanding that each pixel has a different “background”(i.e. no-growth) greenness against which any seasonal change must be compared (Beever et al. 2013; Piekielek and Hansen 2013). These methods also help to eliminate long gaps in data that can allow smoothing algorithms to interpolate beyond the valid range of data (in the case of NDVI from 0 –1):Annual minimum NDVI values that were labeled as high-quality were identified in the 13 year time-series.The bottom first percentileof a distribution of minimum values was used as the “background”value to fill-in missing values when the target was identified as being under snow cover.All NDVI values identified by pixel-reliability grids as being of high or marginal quality werepreserved and snow-covered pixels and dates were filled in with each pixels “background”value.Composite day of year grids were used to identify the actual date from which the 16-day maximum composite NDVI value came.Each pixel’s entire time-series (2000 –2012) was smoothed in a weighted regression framework against time using smoothing splines (Chambers and Hastie 1992). NDVI data of marginal quality and snow-covered background values contributed half the weight to final smoothed values as did high-quality values. The final smoothed values were used to interpolate the time-series to a daily time-step and to record annual NDVI amplitudes. Land surface phenology metrics were calculated as follows:Start of season (SOS) –the first annual day of year when smoothed NDVI crosses half of its annual amplitude (White et al. 2009).End of Season (EOS) –the last day of year when smoothed NDVI crosses half of its annual amplitude.Maximum annual NDVI (MAX) –the highest annual smoothed NDVITiming of annual maximum (DOYMAX) –the smoothed day of year when NDVI reaches its maximum valueEstimated annual productivity (INDVI) –the integrated area under the growing season (SOS to EOS) NDVI curve (Goward et al 1985).

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the Canadian Centre for Climate Modeling and Analysis model, CanESM2, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the National Center of Atmospheric Research (USA) model, CCSM4, simulations (r6i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the National Centre of Meteorological Research (France) model, CNRM-CM5, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the NOAA Geophysical Fluid Dynamics Laboratory (USA) model, GFDL-ESM2M, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the Met Office Hadley Center (UK) model, HadGEM2-ES, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the Institut Pierre Simon Laplace (France) model, IPSL-CM5A-MR, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and 2071-2099 in the future. The nine climate variables include aridity index (unitless), potential evapotranspiration (mm), precipitation (mm), relative humidity (%), downward solar radiation (W.m-2), maximum daily temperature (C), minimum daily temperature (C), average temperature (C), vapor pressure deficit (Pa). Most of these variables were directly available from the 4km MACAv2-METDATA archive at the monthly time frequency, while others such as aridity index, relative humidity, average temperature and vapor pressure deficits were calculated additionally. The climate normals for the different periods (mentioned above) were estimated at 4km spatial resolution and then spatially disaggregated to 800m spatial resolution using bilinear interpolation. A datafile on the elevation of a grid cell at 800m is also made available in this archive.

The Prairie Pothole Region (PPR) in the northern Great Plains contains millions of wetlands that provide habitat for breeding and migrating birds. Although conservation and management largely focuses on protecting habitat for nesting ducks, other wetland-dependent birds also rely on this region. Land managers want to know whether habitat conserved for ducks provides habitat for other species and how these habitats will be affected by climate change. A primary goal of this research has been to assist managers in conserving areas that will provide habitat to a broad suite of species. We considered how climate change is likely to affect land-use patterns and agricultural conversion risk. We then predicted how climate change will affect the density and distribution of wetlands under future climate conditions based on models incorporating land-use, climate models, hydrology, and distribution of wetland basins. Although the density of wetlands with water will most likely decline across the region, the distribution of wetlands probably will not shift spatially because the location of wetland basins is static. Species distribution modeling techniques projected that geographic ranges of nearly 30 species of wetland-dependent birds will decline by an average of 31% (range: 75% decline to 16% increase) as the climate warms. To test whether waterfowl are effective representatives, or surrogates, for other wetland-dependent birds, we used data from citizen science bird surveys and species life history to mathematically demonstrate how closely wetland birds associate with waterfowl. At small scales in space and time (for example, a small wetland complex on an annual basis), many waterfowl and other wetland birds species were segregated. Yet at larger scales in space and time, the scales at which habitat protection decisions are made, many species appeared to co-occur because various microhabitats were represented in the larger dynamic landscapes through 30-yr time periods.