Historical (1984-2014) Landsat-based ET maps were generated for Palo Verde Irrigation District (PVID) and eight other sub-basins in parts of Middle and Lower Central Valley, California. A total of 3,396 Landsat images were processed using the Operational Simplified Surface Energy balance (SSEBop) model that integrates weather and remotely sensed images to estimate monthly and annual ET within the study areas over the 31 years. Model output evaluation and validation using gridded-flux data and water balance ET approaches indicated relatively strong association between SSEBop ET and validation datasets. Historical trend analysis of seven agro-hydrologic variables were done using the Seasonal Mann-Kendall test.

Level 3 soil moisture datasets from the recently launched Soil Moisture Active Passive (SMAP) satellite are evaluated for drought monitoring in rangelands.Validation of SMAP soil moisture (SSM) with in situ and modeled estimates showed high level of agreement.SSM showed the highest correlation with surface soil moisture (0-5 cm) and a strong correlation to depths up to 20 cm.SSM showed a reliable and expected response of capturing seasonal dynamics in relation to precipitation, land surface temperature, and evapotranspiration.Further evaluation using multi-year SMAP datasets is necessary to quantify the full benefits and limitations for drought monitoring in rangelands.

In this study, we combined two actual evapotranspiration datasets (ET), one obtained from a root zone water balance model and another from an energy balance model, to partition annual ET into green (rainfall-based) and blue (surface/groundwater) water sources. Time series maps of green water ET (GWET) and blue water ET (BWET) are produced for the conterminous United States (CONUS) over 2001–2015.

Analysis of the relationship between evapotranspiration (ET) and its natural and anthropogenic drivers is critical in water-limited basins such as the Nile. The spatiotemporal relationships of ET with rainfall and vegetation dynamics in the Nile Basin during 2002–2011 were analyzed using satellite-derived data. Non-parametric statistics were used to quantify ET-rainfall interactions and trends across land cover types and subbasins. We found that 65% of the study area (2.5 million km2) showed significant (p < 0.05) positive correlations between monthly ET and rainfall, whereas 7% showed significant negative correlations. As expected, positive ET-rainfall correlations were observed over natural vegetation, mixed croplands/natural vegetation, and croplands, with a few subbasin-specific exceptions. In particular, irrigated croplands, wetlands and some forests exhibited negative correlations. Trend tests revealed spatial clusters of statistically significant trends in ET (6% of study area was negative; 12% positive), vegetation greenness (24% negative; 12% positive) and rainfall (11% negative; 1% positive) during 2002–2011. The Nile Delta, Ethiopian highlands and central Uganda regions showed decline in ET while central parts of Sudan, South Sudan, southwestern Ethiopia and northeastern Uganda showed increases. Except for a decline in ET in central Uganda, the detected changes in ET (both positive and negative) were not associated with corresponding changes in rainfall. Detected declines in ET in the Nile delta and Ethiopian highlands were found to be attributable to anthropogenic land degradation, while the ET decline in central Uganda is likely caused by rainfall reduction.

Most of the western United States is experiencing the effects of rapid and directional climate change (Garfin et al. 2013). These effects, along with forecasts of profound changes in the future, provide strong motivation for resource managers to learn about and prepare for future changes. Climate adaptation plans are based on an understanding of historic climate variation and their effects on ecosystems and on forecasts of future climate trends. Frameworks for climate adaptation thus universally identify the importance of a summary of historical, current, and projected climates (Glick, Stein, and Edelson 2011; Cross et al. 2013; Stein et al. 2014). Trends in physical climate variables are usually the basis for evaluating the exposure component in vulnerability assessments. Thus, this chapter focuses on step 2 of the Climate-Smart Conservation framework (chap. 2): vulnerability assessment. We present analyses of historical and current observations of temperature, precipitation, and other key climate measurements to provide context and a baseline for interpreting the ecological impacts of projected climate changes.

In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?

There is a high demand for agrohydrologic models to use gridded near-surface air temperature data as the model input for estimating regional and global water budgets and cycles. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global scale. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, the daily 0.25° resolution GLDAS air temperature data are compared with two reference datasets: 1) 1-km-resolution gridded Daymet data (2002 and 2010) for the conterminous United States and 2) global meteorological observations (2000–11) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets, including 13 511 weather stations, indicates a fairly high accuracy of the GLDAS data for daily temperature. The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accuracy. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. The evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but caution should be taken when the data are used in mountainous areas or places with sparse weather stations.

Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.

There is substantial literature on the importance of bridging across disciplinary and science–management boundaries. One of the ways commonly suggested to cross boundaries is for participants from both sides of the boundary to jointly produce information (i.e., knowledge co-production). But simply providing tools or bringing people together in the same room is not sufficient. Here we present a case study documenting the mechanisms by which managers and scientists collaborated to incorporate climate change projections into Colorado’s State Wildlife Action Plan. A critical component of the project was the use of a collaborative modeling and visualization workspace: the U.S. Geological Survey’s Resource for Advanced Modeling (RAM). Using video analysis and pre/post surveys from this case study, we examine how the RAM facilitated cognitive and social processes that co-produced a more salient and credible end product. This case provides practical suggestions to scientists and practitioners who want to implement actionable science.

Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the same temporal resolution. Here we combine long-term ET estimates from a water-balance approach with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product for 2000–2015. We test the new combined method, the original SSEBop product, and another remote sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product showed advantages especially in non-irrigated areas where the new method showed a coefficient of determination R2 of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly data set will be a useful, unique contribution to ET estimation, due to its combination of remote sensing-based variability and ground-based long-term water balance constraints.