A robust method for characterizing the biophysical environment of terrestrial vegetation uses the relationship between Actual Evapotranspiration (AET) and Climatic Water Deficit (CWD). These variables are usually estimated from a water balance model rather than measured directly and are often more representative of ecologically-significant changes than temperature or precipitation. We evaluate trends and spatial patterns in AET and CWD in the Continental United States (CONUS) during 1980–2019 using a gridded water balance model. The western US had linear regression slopes indicating increasing CWD and decreasing AET (drying), while the eastern US had generally opposite trends. When limits to plant performance characterized by AET and CWD are exceeded, vegetation assemblages change. Widespread increases in aridity throughout the west portends shifts in the distribution of plants limited by available moisture. A detailed look at Sequoia National Park illustrates the high degree of fine-scale spatial variability that exists across elevation and topographical gradients. Where such topographical and climatic diversity exists, appropriate use of our gridded data will require sub-setting to an appropriate area and analyzing according to categories of interest such as vegetation communities or across obvious physical gradients. Recent studies have successfully applied similar water balance models to fire risk and forest structure in both western and eastern U.S. forests, arid-land spring discharge, amphibian colonization and persistence in wetlands, whitebark pine mortality and establishment, and the distribution of arid-land grass species and landscape scale vegetation condition. Our gridded dataset is available free for public use. Our findings illustrate how a simple water balance model can identify important trends and patterns at site to regional scales. However, at finer scales, environmental heterogeneity is driving a range of responses that may not be simply characterized by a single trend.

Land cover change plays a critical role in influencing hydrological responses. Change in land cover has impacted runoff across basins with substantial human interference; however, the impacts in basins with minimal human interference have been studied less. In this study, we investigated the impacts of directional land cover changes (forest to/from combined grassland and shrubland) in runoff coefficient (RC; ratio of runoff to precipitation) and runoff volume across 603 low human interference reference basins in the conterminous United States (CONUS). The results indicate basins with significant (p<0.05) increasing trends in runoff and RC were across the northeast and northwest regions of CONUS, and basins with decreasing trends were in the southern CONUS region. A unit percent increase in basin area from grassland and shrubland to forest was associated with a ∼4% decrease in RC across basins with decreasing RC trends. Similarly, a unit percent increase in basin area from forest to a combined grassland and shrubland was associated with a ∼1% increase in RC across increasing RC trend basins. Runoff volume was decreased (increased) by ∼25 × 106 m3 yr−1 (∼9 × 106 m3 yr−1) across basins with decreasing (increasing) trends in runoff and RC. When relating runoff volume with the area of directional land cover changes, each 1 km2 increase in area from grassland and shrubland to forest resulted in a decrease of ∼530,000 m3 runoff volume across basins with decreasing trends. In contrast, each 1 km2 increase in area from forest to grassland and shrubland increased runoff volume by ∼200,000 m3 across increasing trend basins. Basins in the southern region of CONUS were more impacted by runoff parameters (RC and runoff volume) from directional land cover changes than basins in the northern region. The findings of this study are useful for planning and managing water availability for sustainable and adaptive water resources management at regional scales.

Phenology is the study of recurring plant and animal life-cycle stages which can be observed across spatial and temporal scales that span orders of magnitude (e.g., organisms to landscapes). The variety of scales at which phenological processes operate is reflected in the range of methods for collecting phenologically relevant data, and the programs focused on these collections. Consideration of the scale at which phenological observations are made, and the platform used for observation, is critical for the interpretation of phenological data and the application of these data to both research questions and land management objectives. However, there is currently little capacity to facilitate access, integration and analysis of cross-scale, multi-platform phenological data. This paper reports on a new suite of software and analysis tools – the “Pheno-Synthesis Software Suite,” or PS3 – to facilitate integration and analysis of phenological and ancillary data, enabling investigation and interpretation of phenological processes at scales ranging from organisms to landscapes and from days to decades. We use PS3 to investigate phenological processes in a semi-aride, mixed shrub-grass ecosystem, and find that the apparent importance of seasonal precipitation to vegetation activity (i.e., “greenness”) is affected by the scale and platform of observation. We end by describing potential applications of PS3 to phenological modeling and forecasting, understanding patterns and drivers of phenological activity in real-world ecosystems, and supporting agricultural and natural resource management and decision-making.

Scenario planning has emerged as a widely used planning process for resource management in situations of consequential, irreducible uncertainty. Because it explicitly incorporates uncertainty, scenario planning is regularly employed in climate change adaptation. An early and essential step in developing scenarios is identifying “climate futures”—descriptions of the physical attributes of plausible future climates that could occur at a specific place and time. Divergent climate futures that describe the broadest possible range of plausible conditions support information needs of decision makers, including understanding the spectrum of potential resource responses to climate change, developing strategies robust to that range, avoiding highly consequential surprises, and averting maladaptation. Here, we discuss three approaches for generating climate futures: a Representative Concentration Pathway (RCP)-ensemble, a quadrant-average, and an individual-projection approach. All are designed to capture relevant uncertainty, but they differ in utility for different applications, complexity, and effort required to implement. Using an application from Big Bend National Park as an example of numerous similar efforts to develop climate futures for National Park Service applications over the past decade, we compare these approaches, focusing on their ability to capture among-projection divergence during early-, mid-, and late-twenty-first century periods to align with near-, mid-, and long-term planning efforts. The quadrant-average approach and especially the individual-projection approach captured a broader range of plausible future conditions than the RCP-ensemble approach, particularly in the near term. Therefore, the individual-projection approach supports decision makers seeking to understand the broadest potential characterization of future conditions. We discuss tradeoffs associated with different climate future approaches and highlight suitable applications.

NC CASC's Edwards, Rangwala, Rattling Leaf, Tangen Contribute to Launch of U.S. Climate Resilience Toolkit's New Section for the Northern Great Plains Region

In September 2021, the U.S. Climate Resilience Toolkit announced the publication of a new Northern Great Plains Region section. The section features narratives, tools, case studies, and reports related to the impacts of climate change across the Northern Great Plains and information on how people can build resilience to them.

Status of Tribes and Climate Change (STACC) Report

The Status of Tribes and Climate Change (STACC) Report seeks to uplift and honor the voices of Indigenous peoples across the U.S. to increase understanding of Tribal lifeways, cultures, and worldviews, the climate change impacts Tribes are experiencing, the solutions they are implementing, and ways that all of us can support Tribes in adapting to our changing world.

James Rattling Leaf Helps Standing Rock Sioux Tribe Host Climate Change Summit

NC CASC’s consultant to the Great Plains Tribal Water Alliance, James Rattling Leaf, helped the Standing Rock Sioux Tribe organize and host a two-day Climate Change Summit on September 9-10th in Bismarck, North Dakota.

NC CASC Publication on Drought Decision Making Highlighted by NCASC News Announcement

A recent news announcement by the National CASC highlighted a publication funded by the NC CASC, "A typology of drought decision making: Synthesizing across cases to understand drought preparedness and response actions."

NC CASC Welcomes New Communications Specialist, Ulyana Horodyskyj

The NC CASC welcomes our new Communications Specialist, Ulyana Horodyskyj. Ulyana is a geologist/glaciologist/climate change expert with extensive experience in science communication, as well as previous experience as a research associate.