Northern Great Plains 2022 Request for Proposals
The National Fish and Wildlife Foundation (NFWF) is soliciting proposals to conserve and restore grasslands and wildlife species in the Northern Great Plains. The goal of the Northern Great Plains Program is to maintain and/or improve interconnected grasslands in focal areas to sustain healthy populations of grassland-obligate species while fostering sustainable livelihoods and preserving cultural identities. Particular species of interest include grassland obligate songbirds, black-footed ferret, pronghorn and greater sage-grouse.
NC CASC Welcomes Elsa Culler
Laura Edwards Featured in South Dakota Public Broadcasting’s, “The Moment”
Climate change models for the northern Rocky Mountains predict changes in temperature and water availability that in turn will alter vegetation. Changes include timing of plant life-history events, or phenology, such as green-up, flowering and senescence, and shifts in species composition. Moreover, climate changes may favor different species, such as nonnative, annual grasses over native species. Changes in vegetation could make forage for ungulates, sage-grouse, and livestock available earlier in the growing season, but shifts in species composition and phenology may also result in earlier senescence (die-off or dormancy) and reduced overall forage production.
The information presented here provides the five-year science agenda for the North Central Climate Science Center. It is meant to be a high-level guide that describes the spatial context of the center, the primary partners and stakeholders, and the strategic framework the center will use in applying climate science to inform management.
Seasonal change is important to consider when managing conservation areas at landscape scales. The study of such patterns throughout the year is referred to as phenology. Recurring life-cycle events that are initiated and driven by environmental factors include animal migration and plant flowering. Phenological events capture public attention, such as fall color change in deciduous forests, the first flowering in spring, and for those with allergies, the start of the pollen season. These events can affect our daily lives, provide clues to help understand and manage ecosystems, and provide evidence of how climate variability can affect the natural cycle of plants and animals. Phenological observations can be gathered at a range of scales, from plots smaller than an acre to landscapes of hundreds to thousands of acres. Linking these observations to diverse disciplines such as evolutionary biology or climate sciences can help further research in species and ecosystem responses to climate change scenarios at appropriate scales. A cooperative study between the National Park Service (NPS), the U.S. Geological Survey (USGS), and the National Aeronautics and Space Administration (NASA) has been exploring how satellite information can be used to summarize phenological patterns observed at the park or landscape scale and how those summaries can be presented to both park managers and visitors. This study specifically addressed seasonal changes in plants, including the onset of growth, photosynthesis in the spring, and the senescence of deciduous vegetation in the fall. The primary objective of the work is to demonstrate that seasonality even in protected areas changes considerably across years. A major challenge is to decouple natural variability from possible trends—directional change that can lead to a permanent and radically different ecosystem state. Trends can be either a gradual degradation of the landscape (often from external influences) or steady improvement (by implementing long-term conservation plans). In either case, it is important to first grasp the magnitude of natural variation so that it is not confused with actual trends. This work used existing and freely available remote sensing data, specifically the NASA-funded 250-meter (m) spatial resolution land-surface phenology product for North America. This product is calculated from an annual record of vegetation health observed by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The land-surface phenology product is, in essence, a method to summarize all the observations throughout a year into a few key, ecologically relevant “metrics”.
Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P < 0.01), and targeted sampling did detect more species than nontargeted sampling with less sampling effort (χ2) = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be highly useful tools for guiding invasive species monitoring, and we support the use of an iterative sampling design for guiding such efforts.
Buffelgrass, a highly competitive and flammable African bunchgrass, is spreading rapidly across both urban and natural areas in the Sonoran Desert of southern and central Arizona. Damages include increased fire risk, losses in biodiversity, and diminished revenues and quality of life. Feasibility of sustained and successful mitigation will depend heavily on rates of spread, treatment capacity, and cost–benefit analysis. We created a decision support model for the wildland–urban interface north of Tucson, AZ, using a spatial state-and-transition simulation modeling framework, the Tool for Exploratory Landscape Scenario Analyses. We addressed the issues of undetected invasions, identifying potentially suitable habitat and calibrating spread rates, while answering questions about how to allocate resources among inventory, treatment, and maintenance. Inputs to the model include a state-and-transition simulation model to describe the succession and control of buffelgrass, a habitat suitability model, management planning zones, spread vectors, estimated dispersal kernels for buffelgrass, and maps of current distribution. Our spatial simulations showed that without treatment, buffelgrass infestations that started with as little as 80 ha (198 ac) could grow to more than 6,000 ha by the year 2060. In contrast, applying unlimited management resources could limit 2060 infestation levels to approximately 50 ha. The application of sufficient resources toward inventory is important because undetected patches of buffelgrass will tend to grow exponentially. In our simulations, areas affected by buffelgrass may increase substantially over the next 50 yr, but a large, upfront investment in buffelgrass control could reduce the infested area and overall management costs.

