Ecological niche models predict plant responses to climate change by circumscribing species distributions within a multivariate environmental framework. Most projections based on modern bioclimatic correlations imply that high-elevation species are likely to be extirpated from their current ranges as a result of rising growing-season temperatures in the coming decades. Paleoecological data spanning the last 15,000 years from the Greater Yellowstone region describe the response of vegetation to past climate variability and suggest that white pines, a taxon of special concern in the region, have been surprisingly resilient to high summer temperature and fire activity in the past. Moreover, the fossil record suggests that winter conditions and biotic interactions have been critical limiting variables for high-elevation conifers in the past and will likely be so in the future. This long-term perspective offers insights on species responses to a broader range of climate and associated ecosystem changes than can be observed at present and should be part of resource management and conservation planning for the future.

Abstract (from http://link.springer.com/article/10.1007/s00382-015-2692-0/fulltext.html): The future rate of climate change in mountains has many potential human impacts, including those related to water resources, ecosystem services, and recreation. Analysis of the ensemble mean response of CMIP5 global climate models (GCMs) shows amplified warming in high elevation regions during the cold season in boreal midlatitudes. We examine how the twenty-first century elevation-dependent response in the daily minimum surface air temperature [d(ΔTmin)/dz] varies among 27 different GCMs during winter for the RCP 8.5 emissions scenario. The focus is on regions within the northern hemisphere mid-latitude band between 27.5°N and 40°N, which includes both the Rocky Mountains and the Tibetan Plateau/Himalayas. We find significant variability in d(ΔTmin)/dz among the individual models ranging from 0.16 °C/km (10th percentile) to 0.97 °C/km (90th percentile), although nearly all of the GCMs (24 out of 27) show a significant positive value for d(ΔTmin)/dz. To identify some of the important drivers associated with the variability in d(ΔTmin)/dz during winter, we evaluate the co-variance between d(ΔTmin)/dz and the differential response of elevation-based anomalies in different climate variables as well as the GCMs’ spatial resolution, their global climate sensitivity, and their elevation-dependent free air temperature response. We find that d(ΔTmin)/dz has the strongest correlation with elevation-dependent increases in surface water vapor, followed by elevation-dependent decreases in surface albedo, and a weak positive correlation with the GCMs’ free air temperature response.

UNL scientists are part of a coalition helping two American Indian tribes prepare for drought and other climate fluctuations. The tribes — the Eastern Shoshone and Northern Arapaho, both located on the Wind River Indian Reservation in western Wyoming — have worked with climate and social scientists in the past year to prepare regular climate and drought summaries for use in making water and resource decisions. A second phase, launched this summer, includes UNL's Cody Knutson and will generate a vulnerability assessment designed to help the tribes reduce the likelihood of future drought-related impacts. Read More:   http://news.unl.edu/newsrooms/unltoday/article/researchers-help-tribes-enhance-drought-and-climate-resilience/

Land managers in the Pacific Northwest have reported a need for updated scientific information on the ecology and management of mixed-conifer forests east of the Cascade Range in Oregon and Washington. Of particular concern are the moist mixed-conifer forests, which have become drought-stressed and vulnerable to high-severity fire after decades of human disturbances and climate warming. This synthesis responds to this need. We present a compilation of existing research across multiple natural resource issues, including disturbance regimes, the legacy effects of past management actions, wildlife habitat, watershed health, restoration concepts from a landscape perspective, and social and policy concerns. We provide considerations for management, while also emphasizing the importance of local knowledge when applying this information at the local and regional level.

The Wyoming Basin Rapid Ecoregional Assessment was conducted in partnership with the Bureau of Land Management (BLM). The overall goals of the BLM Rapid Ecoregional Assessments (REAs) are to identify important ecosystems and wildlife habitats at broad spatial scales; identify where these resources are at risk from Change Agents, including development, wildfire, invasive species, disease and climate change; quantify cumulative effects of anthropogenic stressors; and assess current levels of risk to ecological resources across a range of spatial scales and jurisdictional boundaries by assessing all lands within an ecoregion. There are several components of the REAs. Management Questions, developed by the BLM and stakeholders for the ecoregion, identify the regionally significant information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant species and ecological communities that are of management concern. Change Agents that currently affect or are likely to affect the condition of species and communities in the future are identified and assessed. REAs also identify areas that have high conservation potential that are referred to as “large intact areas.” At the ecoregion level, the ecological value of large intact areas is based on the assumption that because these areas have not been greatly altered by human activities (such as development), they are more likely to contain a variety of plant and animal communities and to be resilient and resistant to changes resulting from natural disturbances such as fire, insect outbreaks, and disease. The Wyoming Basin Ecoregion encompasses approximately 133,656 square kilometers (51,604.87 square miles), including portions of Wyoming, Colorado, Utah, Idaho, and Montana. The Wyoming Basin has some of the highest quality wildlife habitats remaining in the Intermountain West. The wide variety of habitats includes intermountain basins dominated by sagebrush shrublands interspersed with deciduous and conifer woodlands and montane or subalpine forests at higher elevations. The Wyoming Basin also supports ranching and agricultural operations that are important to the region’s economy and vital to conserving habitats for wildlife. The region also contains abundant energy resources, including large natural gas reserves and areas of high wind-energy potential. Combined with increased residential and industrial development, fast-paced energy development is resulting in notable land-use changes, including habitat loss and fragmentation. In the Wyoming Basin REA, we evaluated the following seven communities as Conservation Elements: streams and rivers, wetlands, riparian forests and shrublands, sagebrush steppe, desert shrublands, foothill shrublands and woodlands, and mountain forests and alpine zones. We evaluated a total of 14 species and species assemblages as Conservation Elements: aspen forests and woodlands, five-needle pine forests and woodlands, juniper woodlands, cutthroat trout, three-species fish assemblage, northern leatherside chub, sauger, spadefoot assemblage, greater sage-grouse, golden eagle, ferruginous hawk, sagebrush-obligate birds, pygmy rabbit, and mule deer. We evaluated Management Questions (Core and Integrated) for each species and community for the Wyoming Basin REA. Core Management Questions address primary management issues, including (1) where is the Conservation Element, and what are its key ecological attributes (characteristics of species and communities that may affect their long-term persistence or viability); (2) what and where are the Change Agents; and (3) how do the Change Agents affect the key ecological attributes? Integrated Management Questions synthesize the Core Management Questions as follows: (1) where are the areas with high landscape-level ecological values; (2) where are the areas with high landscape-level risks; and (3) where are the potential areas for conservation, restoration, and development? The associated maps and key findings for each Management Question are summarized for each Conservation Element in individual chapters. Additional chapters on landscape intactness and an REA synthesis are included.

The NC CSC has collaborated with the USGS AmericaView program to deploy cameras that will record phenology throughout the region.  Although, not all cameras were deployed throught AmericaView, they were deployed at the following sites: Ashland Bottoms, Kansas Bangtail Study Area in Bozeman, Montana Central Plains Experimental Range, Colorado Grand River Grasslands, Iowa Grand Teton National Park National Elk Refuge, Wyoming Nine Mile Prairie, University of Nebraska, Nebraska Oakville Prairie, North Dakota Poudre Learning Center, Colorado Sagebrush Steppe, Wyoming Earth Resources Observation and Science Center, South Dakota